K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

Đáp án A.

                      

Theo giả thiết ta có CD' ⊥ (ABC). Áp dụng định lý Cô-sin cho ∆ ABD ta được: 

AD = 

Hình chiếu vuông góc của AC’ trên mặt phẳng (ABC) là AD, vì vậy ta có góc giữa AC' và mặt phẳng (ABC) là góc  C ' A D ^   =   45 0 =>  ∆ C'AD vuông cân tại D 

Diện tích  ∆ ABC là 

Do đó 

2 tháng 11 2019

Đáp án D.

Gọi M là trung điểm BC, dựng 

∆ AA'G vuông tại G, GH là đường cao => A'G =  1 3

Vậy 

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

30 tháng 7 2017

Đáp án C

Ta dễ dàng chứng minh được AA'//(BCC'B')

Gọi G là trọng tâm của tam giác ABC. Suy ra A'G ⊥ (ABC)

Ta có  

Lại có 

 Ta luôn có 

Gọi M, M' lần lượt là trung điểm của BC và B'C'. Ta có  .

Mà MM'//BB' nên BC ⊥ BB' => BCC'B' là hình chữ nhật 

Từ: 

14 tháng 8 2016

Tam giác ABC vuông tại A, ta tính được AC:

\(AC^2=BC^2-AB^2=25a^2-9a^2=16a^2\Rightarrow AC-4a\)

Trong mặt phẳng (SAC), qua S kẻ SH vuông góc với AC, H thuộc ACTa có:\(SH=SA.sin30^0=2a\sqrt{3}.\frac{1}{2}=a\sqrt{3}\)\(AH=SA.cos30^0=2a\sqrt{3}.\frac{\sqrt{3}}{2}=3a\)Thể tích khối chóp S.ABC: \(V_{S.ABC}=\frac{1}{2}.SH.S_{\Delta ABC}=\frac{1}{3}.a\sqrt{3}.\frac{1}{2}.3a.4a=2\sqrt{3}a\)Trong mặt phẳng đáy (ABC), qua H kẻ HK vuông góc với BC và cắt BC tại KTam giác HKC đồng dạng với tam giác BAC, ta được:\(\frac{HK}{AB}=\frac{HC}{BC}=\frac{a}{5a}=\frac{1}{5}\rightarrow HK=\frac{1}{5}AB=\frac{1}{5}.3a=\frac{3}{5}a\)Nối SK. Trong mặt phẳng (SHK), từ H kẻ HI vuông góc với SKTa chứng minh được HI vuông góc với mặt phẳng (SBC):
Ta có:
\(\begin{cases}HK\perp BC\\BC\perp SH\end{cases}\Rightarrow BC\perp\left(SHK\right)\Rightarrow BC\perp HI\)mặt khác: BC_|_HI (1)
HI_|_SK(2)từ (1) (2)=> HI_|_(SBC)Khoảng cách từ điểm H đến mặt phẳng (ABC) là HIXác định khoảng cách từ A đến mặt phẳng (ABC)Suy ra khoảng cách từ A đến mặt phẳng (SBC) được tính theo:  
HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Gọi \(H\) là trung điểm của \(AB\)\( \Rightarrow A'H \bot \left( {ABC} \right)\)

\(AH = \frac{1}{2}AB = \frac{a}{2}\)

\(\Delta AA'H\) vuông tại \(H\)\( \Rightarrow A'H = \sqrt {AA{'^2} - A{H^2}}  = \frac{{a\sqrt 3 }}{2}\)

\(\begin{array}{l}{S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4}\\{V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.A'H = \frac{{3{a^3}}}{8}\end{array}\)

6 tháng 1 2018

Đáp án A

Gọi I là trung điểm của BC.

13 tháng 10 2018

17 tháng 12 2019

đán áp B