K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

 Đáp án B

 

11 tháng 7 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta chọn hệ trục tọa độ sao cho: C là gốc tọa độ,  CD → = a i → ;  CB → = a j → ;  CC ' → = a k →

Trong hệ tọa độ vừa chọn ta có: C(0; 0; 0), A’(a; a ; a), D(a; 0; 0), D’(a; 0; a)

CA ' →  = (a; a; a),  DD ' →  = (0; 0; a)

 

Gọi ( α ) là mặt phẳng chứa  CA ' → và song song với  DD ' → . Mặt phẳng ( α ) có vecto pháp tuyến là: n →  =  CA ' →    DD ' →  = ( a 2 ; − a 2 ; 0) hay x – y = 0

Phương trình tổng quát của ( α ) là x – y = 0.

Ta có:

d(CA′, DD′) = d(D,( α )) = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy khoảng cách giữa hai đường thẳng CA’ và DD’ là Giải sách bài tập Toán 12 | Giải sbt Toán 12

31 tháng 3 2019

Đáp án D.

13 tháng 4 2019

Chọn C

Kẻ CM vuông góc với B’D’; MJ vuông góc với BD; JK vuông góc với CM. Chứng minh khoảng cách giữa BD và CD’ bằng độ dài đoạn JK.

 

23 tháng 7 2017

Chọn đáp án B

Gọi M là trung điểm BB' 

Gắn hệ trục tọa độ như hình vẽ:

Ta có: D(0;a;0), A'(0;0;a), C(a;a;0), M(a;0; a 2 )

Khi đó: 

Mặt phẳng (A’MD) đi qua điểm  và nhận làm vectơ pháp tuyến là:

Khi đó: 

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

6 tháng 9 2017

Chọn A

18 tháng 2 2019

Chọn A.

Ta có

A B C D / / A ' B ' C ' D B D ⊂ A B C D A ' C ' ⊂ A ' B ' C ' D ' ⇒ d B D ; A ' C ' = d A B C D ; A ' B ' C ' D ' = A A ' = a

29 tháng 1 2019

Đáp án B

Ta có