K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

9 tháng 7 2018

29 tháng 3 2016

A' A B C D H D' C' B'

Tam giác A'AC vuông cân tai A và A'C=a nên A'A=AC=\(\frac{a}{\sqrt{2}}\)

Do đó : \(AB=B'C'=\frac{a}{2}\)

\(V_{ABB'C}=\frac{1}{3}B'C'.S_{\Delta ABB'}=\frac{1}{6}B'C'.AB.BB'=\frac{a^3\sqrt{2}}{48}\)

Gọi H là chân đường cao kẻ từ A của tam giác A'AB. Ta có

\(\begin{cases}AH\perp A'B\\AB\perp BC\end{cases}\)\(\Rightarrow AH\perp\left(A'BC\right)\)

Nghĩa là \(AH\perp\left(BCD'\right)\Rightarrow AH=d\left(A,\left(BCD'\right)\right)\)

Ta có :

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AA'^2}\)

Do đó \(d\left(a,\left(BCD'\right)\right)=AH=\frac{a\sqrt{6}}{6}\)

31 tháng 3 2016

Khối đa diện

30 tháng 1 2019

Đáp án B

20 tháng 1 2018

Đáp án D

Gọi M là trung điểm của BC, H là chân đường vuông góc kẻ từ A đến SM. Khi đó khoảng cách từ A đến mặt phẳng (SBC) bằng AH. Ta có:

6 tháng 4 2017

Chọn D.

Gọi H là trung điểm của cạnh AD. Kẻ HI vuông góc với A'D tại I. Khi đó d(B,(A'DCB')) = d(A,(A'DCB')) = 2d(H,(A'DCB')) = 2HI.

18 tháng 5 2019

Đáp án B

Gọi H là trung điểm của AD, vì ΔASD cân ở S nên SH AD.

Vì (SAD)(ABCD) nên SH (ABCD). K HI SD.

Vì DC AD, DC SH nên DC (SAD). Do đó DC HI.

Kết hợp với HI SD, suy ra HI (SDC).

Vì AB // (SDC) nên d(B; (SDC)) = d(A; (SDC)) = 2HI

Ta có

 

Ta lại có

25 tháng 9 2017

Đáp án C

14 tháng 5 2018

Chọn B