Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Chọn hệ trục tọa độ với
B 0 ; 0 ; 0 ; M 0 ; a ; 0 ; P a ; 2 a ; 3 a 2 v à N a 2 ; 2 a ; 3 a
Khi đó: M P → a ; a ; 3 a 2 ; M N → a 2 ; a ; 3 a
Do đó n M N P = → M P → ; M N → = a 2 3 2 ; − 9 4 ; 1 2
Suy ra
M N P : 6 x − 9 y + 2 z + 9 a = 0 ; A a ; 0 ; 0 .
Khi đó d A ; M N P = 6 a + 9 a 6 2 + 9 2 + 2 2 = 15 a 11 .
Đáp án B
Ta có d D ; A B ' C = d B ; A B ' C mà A M A D = 3 4
Và 1 d 2 B ; A B ' C = 1 A B 2 + 1 B C 2 + 1 B B ' ⇒ d M ; A B ' C = a 2 .
Gọi E, F lần lượt là trung điểm của AD’, B’C.
Suy ra EF là đoạn vuông góc chung cuả AD’, B’C.
Do đó d A D ' ; B ' C = E F = A B = a . Vậy x y = a . a 2 = a 2 2 .
Đáp án B
Gọi K = C D ∩ A B khi đó BC là đường trung bình trong tam giác KAD nên KB =a
Gọi I = K N ∩ A M
Ta có
I M I A = M N K B = 1 2 ⇒ d M = 1 2 d A
Do C E = 1 2 A D nên Δ A C D vuông tại C
Dựng A H ⊥ N C ,
d A = A H = N A . A C N A 2 + A C 2 = a 66 11
Do đó d M = a 66 22
Đáp án D
Gọi E là giao điểm của NP và CD. Gọi G là giao điểm của NP và CC’. Gọi K là giao điểm của MG và B’C’. Gọi Q là giao điểm của ME và AD. Khi đó mặt phẳng (MNP) chính là mặt phẳng (MEG). Gọi d 1 , d 2 lần lượt là khoảng cách từ C, A đến mặt phẳng (MEG). Do AC cắt (MEG) tại điểm H (như hình vẽ) nên d 1 d 2 = H C H A . Do tứ diện CMEG là tứ diện vuông tại C nên
1 d 1 2 = 1 C M 2 + 1 C E 2 + 1 C G 2
Ta có G C ' G C = C ' N C E = 1 3
Suy ra G C = 3 2 C C ' = 9 a 2
Như vậy: 1 d 1 2 = 1 a 2 + 4 9 a 2 + 4 81 a 2
Từ đó d 1 2 = 81 a 2 12 ⇒ d 1 = 9 11 . Ta có Q D M C = E D E C = 1 3 ⇒ Q D = a 3
Ta có Δ H C M đồng dạng với Δ H A Q nên:
H C H A = M C A Q = a 2 a − a 3 = 3 5 ⇒ d 1 d 2 = 3 5 ⇒ d 2 = 5 3 d 1 = 5.9 a 3.11 = 15 a 11