Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đ E I ( 1 ) = ( 8 ) ; T D I → ( 8 ) = ( 3 ) .
A. Phép đối xứng tâm I và phép đối xứng trục IB thì (1) không biến thành hình nào từ (2) đến (8).
B. Phép đối xứng tâm I và phép quay tâm I góc quay 90 o (1) không biến thành hình nào từ (2) đến (8)
D.phép tịnh tiến theo A I → và phép đối xứng tâm I thì hình (1) thành hình (2)
Đáp án C
Gọi Q là trung điểm CD \(\Rightarrow EQ//B'C\)
\(\Rightarrow Q\in\left(P\right)\)
Gọi P là trung điểm A'D' \(\Rightarrow EP//B'D'\Rightarrow P\in\left(P\right)\)
Kéo dài EP cắt C'D' kéo dài tại H \(\Rightarrow HC'=\frac{3}{2}C'D'\)
Trong mặt phẳng (CDD'C') nối HQ cắt C'D tại F
Áp dụng định lý talet: \(\frac{FC'}{DF}=\frac{HC'}{DQ}=3\Rightarrow\frac{DC'-DF}{DF}=3\Rightarrow\frac{DC'}{DF}=4\)
a: \(M\in BC\subset\left(SBC\right);M\in\left(SOM\right)\)
Do đó: \(M\in\left(SBC\right)\cap\left(SOM\right)\)
mà \(S\in\left(SBC\right)\cap\left(SOM\right)\)
nên (SBC) giao (SOM)=SM
b: \(N\in CD\subset\left(SCD\right);N\in\left(SAN\right)\)
Do đó: \(N\in\left(SCD\right)\cap\left(SAN\right)\)
mà \(S\in\left(SCD\right)\cap\left(SAN\right)\)
nên \(\left(SCD\right)\cap\left(SAN\right)=SN\)
c: \(M\in BC\subset\left(SBC\right);M\in\left(SAM\right)\)
Do đó: \(M\in\left(SBC\right)\cap\left(SAM\right)\)
mà S thuộc (SBC) giao (SAM)
nên (SBC) giao (SAM)=SM
d: Trong mp(ABCD), gọi E là giao của AM với BD
\(E\in AM\subset\left(SAM\right);E\in BD\subset\left(SBD\right)\)
Do đó: E thuộc (SAM) giao (SBD)
mà S thuộc (SAM) giao (SBD)
nên (SAM) giao (SBD)=SE
e: Gọi F là giao của AN với BD trong mp(ABCD)
\(F\in AN\subset\left(SAN\right);F\in BD\subset\left(SBD\right)\)
=>F thuộc (SAN) giao (SBD)
mà S thuộc (SAN) giao (SBD)
nên (SAN) giao (SBD)=SF
f: \(CD\subset\left(SCD\right);CD\subset\left(ABCD\right)\)
Do đó: (SCD) giao (ABCD)=CD
Gọi tam giác A'B'C' là ảnh của tam giác ABC qua phép biến hình trên.
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép vị tự tâm O tỉ số k = -2
+) Qua phép đối xứng qua trục Oy biến tam giác ABC thành tam giác A 1 B 1 C 1
Do đó, tọa độ A 1 - 1 ; 1 ; B 1 0 ; 3 v à C 1 - 2 ; 4 .
+) Qua phép vị tự tâm O tỉ số k = -2 biến tam giác A 1 B 1 C 1 thành tam giác A 2 B 2 C 2
Biểu thức tọa độ :
Tương tự; B 2 0 ; - 6 v à C 2 4 ; - 8
Vậy qua phép đối xứng trục Oy và phép vị tự tâm O tỉ số k = -2, biến các điểm A, B, C lần lượt thành
A 2 2 ; - 2 ; B 2 0 ; - 6 v à C 2 4 ; - 8 .