Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là hình chiếu vuông góc của A' lên (ABCD)
Do \(A'A=A'B=A'D\) \(\Rightarrow H\) trùng tâm đường tròn ngoại tiếp tam giác ABD
\(\Rightarrow H\) là trung điểm BD
\(AC=\sqrt{AB^2+AD^2}=2a\)\(\Rightarrow AH=\dfrac{1}{2}AC=a\)
\(\Rightarrow A'H=\sqrt{A'A^2-AH^2}=a\sqrt{3}\)
\(\Rightarrow V=A'H.AB.AD=3a^3\)
Góc giữa BC' và đáy là góc \(\widehat{C'BC}\) \(\Rightarrow BC'=\dfrac{16}{cos\widehat{C'BC}}=\dfrac{16}{\dfrac{8}{17}}=34\)
\(\Rightarrow CC'=\sqrt{BC'^2-BC^2}=30\)
Do đó \(d\left(AC,B'D'\right)=d\left(AC,A'B'C'D'\right)=CC'=30\)
\(AA'//BB'\Rightarrow AA'//\left(BCC'B'\right)\)
\(\Rightarrow d\left(AA';B'C\right)=d\left(AA';BCC'B'\right)=d\left(A;\left(BCC'B'\right)\right)\)
Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\)
Mà \(BB'\perp\left(ABC\right)\) \(\Rightarrow BB'\perp AM\)
\(\Rightarrow AM\perp\left(BCC'B'\right)\Rightarrow AM=d\left(A;\left(BCC'B'\right)\right)\)
\(AM=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
\(\Rightarrow d\left(AA';B'C\right)=\frac{a\sqrt{3}}{2}\)
\(AA'=\dfrac{2a}{\sqrt{3}}\)
\(V=AA'\cdot S_{ABCD}=\dfrac{16a^3}{\sqrt{3}}\)