\(a=\sqrt{29}\)và \(b=\sqrt{23}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

bài này dễ lắm

5 tháng 7 2016

Đường phân giác góc B cắt đường chéo AC tại M. Giả sử AM = \(\frac{30}{7}\left(m\right)\)thì CM = \(\frac{40}{7}\left(m\right)\)và AC = 10 (m)

Từ M dựng MI vuông góc với AB (I thuộc AB) => MI song song BC (vì cùng vuông với AB), theo Talet thì:

\(\frac{BI}{AB}=\frac{MC}{AC}=\frac{\frac{40}{7}}{10}=\frac{4}{7}\Rightarrow BI=\frac{4}{7}AB\)

Từ M dựng MK vuông góc với BC (K thuộc BC), tương tự ta có: \(BK=\frac{3}{7}BC\)

Mà tứ giác BIMK là hình vuông ( vì có 3 góc vuông B,I,K và đường chéo BH chia đôi góc B)

Nên BI = BK. Do đó: \(\frac{4}{7}AB=\frac{3}{7}BC\Rightarrow\frac{AB}{3}=\frac{BC}{4}=p\)(Đặt = p)

Tam giác BAC vuông tại B có AB = 3p; BC = 4p; theo Pitago thì đường chéo AC = 5p = 10(m) => p = 2(m)

=> AB = 3*2 = 6(m) và BC = 4*2 = 8(m)

Vậy, kích thước hình chữ nhật là 6m x 8 m.

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

Hệ thức lượng trong tam giác vuông

29 tháng 4 2017

A D M N P Q B C

Giải:

Ta có: \(\widehat{DAB}=120^0\left(gt\right)\) nên \(\widehat{ADC}=60^0\)

Đường phân giác của \(\widehat{A}\) cắt đường phân giác của \(\widehat{D}\) tại \(M\) thì \(\Delta ADM\) có hai góc bằng \(60^0\)\(30^0\) nên các đường phân giác đó vuông góc với nhau.

Lập luận tương tự chứng tỏ tứ giác \(MNPQ\)\(4\) góc vuông nên nó là hình chữ nhật.

Trong tam giác vuông \(ADM\) có:

\(DM=AD\sin\widehat{DAM}=b\sin60^0=\dfrac{b\sqrt{3}}{2}\)

Trong tam giác vuông \(DCN\) và có:

\(DN=DC\sin\widehat{DCN}=a\sin60^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow MN=DN-DM=\left(a-b\right)\dfrac{\sqrt{3}}{2}\)

Trong tam giác vuông \(DCN\)\(CN=CD\cos60^0=\dfrac{a}{2}\)

Trong tam giác vuông \(BCP\)\(CP=CB\cos60^0=\dfrac{b}{2}\)

Vậy \(NP=CN-CP=\dfrac{a-b}{2}\)

Suy ra diện tích hình chữ nhật \(MNPQ\) là:

\(MN.NP=\left(a-b\right)^2\dfrac{\sqrt{3}}{4}\left(đvdt\right)\)

31 tháng 5 2017

Ôn tập Hệ thức lượng trong tam giác vuông

Bài 1: 

Theo đề, ta có: \(\dfrac{AB}{BC}=\dfrac{30}{7}:\dfrac{40}{7}=\dfrac{3}{4}\) và \(AC=4+5+\dfrac{2}{7}+\dfrac{5}{7}=10\)

=>AB/3=BC/4

Đặt AB/3=BC/4=k

=>AB=3k; BC=4k

Xét ΔABC vuông tại B có \(AC^2=AB^2+BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=CD=6(cm); BC=AD=8(cm)