K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có

góc HDA chung

=>ΔDHA đồng dạng với ΔDAB

b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

c: \(\dfrac{AD^2}{AB^2}=\dfrac{DH\cdot BD}{BH\cdot BD}=\dfrac{HD}{HB}\)

18 tháng 6 2020

a, Xét 2 tam giác vuông đó có: (ADB)=(CBD) (cùng phụ với góc BDC) 

b, AH.BD=AD.AB vì bằng 2 lần diện tích tam giác ADB.

c, Áp dụng hệ thức lượng trong tam giác vuông tính được AH.

Biết AH, BD tính được S tam giác.

a: Xét ΔABH vuông tại H và ΔACB vuông tại B có

góc BAH chung

Do đó: ΔABH đồng dạng với ΔACB

b: ΔABC vuông tại B

=>AC^2=AB^2+BC^2=100

=>AC=10cm

ΔBAC vuông tại B có BH là đường cao

nên AH*AC=AB^2 và BH*AC=BA*BC

=>AH*10=36 và BH*10=6*8=48

=>HA=3,6cm; BH=4,8cm

c: Xét ΔHBC có HE/HB=HK/HC

nên EK//BC

=>góc HEK=góc HBC=góc HAB

Xét ΔHEK vuông tại H và ΔHAB vuông tại H có

góc HEK=góc HAB

Do đó: ΔHEk đồng dạng với ΔHAB

=>HE/HA=EK/AB

=>HE*AB=EK*HA

13 tháng 4 2022

lx

13 tháng 4 2022

lỗi r bn

a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=6^2+8^2=100\)

hay BD=10(cm)

b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔDHA\(\sim\)ΔDAB(g-g)

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm

16 tháng 2 2021

100 nha