K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MH
13 tháng 5 2022
(Tự vẽ hình) Sửa đề: Phân giác của góc BCD cắt BD tại I
b) Do \(CI\) là phân giác nên ta có: \(\dfrac{IB}{ID}=\dfrac{BC}{CD}\)
Mặt khác: \(\Delta AHB\sim\Delta BCD\) (câu a)
\(\Rightarrow\dfrac{BC}{CD}=\dfrac{AH}{HB}\Rightarrow\dfrac{IB}{ID}=\dfrac{AH}{HB}\Rightarrow IB.HB=ID.AH\)
27 tháng 3 2021
a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB\(\sim\)ΔBCD(g-g)
12 tháng 5 2023
a: Xét ΔBHI vuông tại H và ΔAKI vuông tại K có
góc BIH=góc AIK
=>ΔBHI đồng dạng vói ΔAKI
=>IB*IK=IA*IH
b: góc BHA=góc BKA=90 độ
=>BHKA nội tiếp
=>góc BAH=góc BKH
Xét tam giác HAD và tam giác CBD có :
\(\hept{\begin{cases}\widehat{ADH}=\widehat{DBC}\left(\text{so le trong }\right)\\\widehat{AHD}=\widehat{DCB}\left(=90^{\text{o}}\right)\end{cases}}\)
=> \(\Delta HAD\approx\Delta CBD\left(g-g\right)\)
b) Xét tam giác BAH và tam giác DMH có
\(\hept{\begin{cases}\widehat{ABH}=\widehat{HDM}\left(\text{so le trong}\right)\\\widehat{AHB}=\widehat{MHD}\left(=90^{\text{o}}\right)\end{cases}}\)
=> \(\Delta BAH\approx\Delta DMH\left(g-g\right)\)
=> \(\frac{BH}{DH}=\frac{AH}{MH}\)(1)
Tương tự \(\Delta ADH\approx\Delta NBH\left(g-g\right)\)
=> \(\frac{BH}{DH}=\frac{NH}{AH}\left(2\right)\)
Từ (1)(2) => \(\frac{AH}{MH}=\frac{NH}{AH}\Rightarrow AH^2=NH.MH\)
CHƠI FREE FIRE À