K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019
https://i.imgur.com/akxOiBW.jpg
NV
19 tháng 9 2019

a/ \(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\right|=\left|\overrightarrow{0}+\overrightarrow{0}\right|=0\)

b/ \(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|+\left|\overrightarrow{OC}+\overrightarrow{OD}\right|=a+a=2a\)

c/

\(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=\left|\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=2\left|\overrightarrow{OB}\right|=2\sqrt{a^2-\frac{a^2}{4}}=a\sqrt{3}\)

NV
19 tháng 8 2021

\(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|=\left|\overrightarrow{OA}+\overrightarrow{BC}\right|=\left|\overrightarrow{OA}+\overrightarrow{AD}\right|=\left|\overrightarrow{OD}\right|=OD=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\)

\(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|=\left|\overrightarrow{AB}+\overrightarrow{AB}\right|=2\left|\overrightarrow{AB}\right|=2AB=2a\)

\(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|=\left|\overrightarrow{CD}+\overrightarrow{AD}\right|=\left|\overrightarrow{BA}+\overrightarrow{AD}\right|=\left|\overrightarrow{BD}\right|=BD=a\sqrt{2}\)

NV
19 tháng 8 2021

undefined

NV
19 tháng 8 2020

\(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{AC}-\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AB}\)

Đáp án A đúng

26 tháng 1 2021

Gọi N là trung điểm BC

\(\left|\overrightarrow{MA}+\overrightarrow{MC}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MO}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MC}+2\overrightarrow{MB}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow4\left|\overrightarrow{MN}\right|=\left|\overrightarrow{BD}\right|\)

\(\Rightarrow\left|\overrightarrow{BD}\right|=4\left|\overrightarrow{MN}\right|=4\left|\overrightarrow{DN}+\overrightarrow{MD}\right|\ge4MD-4DN\)

\(\Rightarrow4MD\le BD+4DN\)

\(\Leftrightarrow MD\le\dfrac{BD+4DN}{4}=\dfrac{a\sqrt{2}+2a\sqrt{5}}{4}=\dfrac{2\sqrt{5}+\sqrt{2}}{4}a\)