K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(AM=MB=\frac{AB}{2}\)

\(DN=NC=\frac{DC}{2}\)

mà AB=CD(ABCD là hình chữ nhật)

nên AM=MB=DN=NC

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Hình bình hành AMND có \(\hat{MAD}=90^0\)

nên AMND là hình chữ nhật

Xét tứ giác BMNC có

BM//NC

BM=NC

Do đó: BMNC là hình bình hành

Hình bình hành BMNC có \(\hat{MBC}=90^0\)

nên BMNC là hình chữ nhật

b: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

c: Ta có: AMCN là hình bình hành

=>AN//CM

=>QN//MK

Ta có: BMDN là hình bình hành

=>DM//BN

=>QM//NK

Xét tứ giác MQNK có

MQ//NK

MK//NQ

Do đó: MQNK là hình bình hành

=>MN cắt QK tại trung điểm của mỗi đường(1)

Ta có: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường(2)

Ta có: ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra AC,MN,BD,QK đồng quy

22 tháng 9

Cho hình chữ nhật \(A B C D\). Gọi \(M\) là trung điểm của \(A B\), \(N\) là trung điểm của \(C D\).

a) Chứng minh \(A M N D\)\(B M N C\) là hình chữ nhật.

Xét tứ giác \(A M N D\):

  • \(A M \parallel D N\) (cùng song song với \(A B\)).
  • \(A D \parallel M N\) (cùng song song với \(A D\)).
  • Hai cạnh kề \(A M\)\(A D\) vuông góc.

Vậy \(A M N D\) là hình chữ nhật.

Tương tự, với tứ giác \(B M N C\):

  • \(B M \parallel C N\).
  • \(B C \parallel M N\).
  • Hai cạnh kề \(B M\)\(B C\) vuông góc.

Vậy \(B M N C\) cũng là hình chữ nhật.


b) Chứng minh \(A M C N\)\(B M D N\) là hình bình hành.

Xét tứ giác \(A M C N\):

  • \(A M \parallel C N\)\(A M = C N\).
  • \(A N \parallel M C\)\(A N = M C\).

Do có hai cặp cạnh đối song song và bằng nhau nên \(A M C N\) là hình bình hành.

Tương tự, trong tứ giác \(B M D N\):

  • \(B M \parallel D N\)\(B M = D N\).
  • \(B N \parallel M D\)\(B N = M D\).

Suy ra \(B M D N\) cũng là hình bình hành.


c) Gọi \(Q , K\) lần lượt là giao điểm của \(A N\)\(D M\); \(B N\)\(C M\). Chứng minh \(A C , D B , Q K , M N\) đồng quy.

  • Giao điểm \(Q = A N \cap D M\)\(K = B N \cap C M\) đều nằm trên đường thẳng song song với \(A B\) (qua trung điểm cạnh bên), do đó \(Q K\) là đường thẳng song song với \(A B\).
  • Hai đường chéo \(A C\)\(B D\) của hình chữ nhật cắt nhau tại \(O\) — chính là tâm hình chữ nhật.
  • \(M N\) nối trung điểm \(A B\)\(C D\), đi qua tâm \(O\).
  • Đường \(Q K\) cũng đi qua \(O\).

Vậy bốn đường thẳng \(A C , B D , M N , Q K\) đồng quy tại \(O\).

a: Ta có: \(AM=MB=\frac{AB}{2}\)

\(DN=NC=\frac{DC}{2}\)

mà AB=CD

nên AM=MB=DN=NC

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Hình bình hành AMND có \(\hat{MAD}=90^0\)

nên AMND là hình chữ nhật

Xét tứ giác BMNC có

BM//NC

BM=NC

Do đó: BMNC là hình bình hành

Hình bình hành BMNC có \(\hat{MBC}=90^0\)

nên BMNC là hình chữ nhật

b: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó; BMDN là hình bình hành

c: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường(1)

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Ta có: AMCN là hình bình hành

=>AN//CM

=>QN//MK

BMDN là hình bình hành

=>DM//BN

=>QM//NK

Xét tứ giác QMKN có

QM//KN

QN//KM

Do đó: QMKN là hình bình hành

=>QK cắt MN tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra AC,BD,QK,MN đồng quy

a: Gọi O là giao điểm của AC và BD

ABCD là hình thoi

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Ta có: \(AM=MB=\frac{AB}{2}\)

\(CN=DN=\frac{CD}{2}\)

mà AB=CD

nên AM=MB=CN=DN

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

=>AN//CM và AN=CM(2)

Xét ΔBAC có

BO,CM là các đường trung tuyến

CM cắt BO tại K

Do đó: K là trọng tâm của ΔABC

=>\(CK=\frac23CM\) (1)

Xét ΔACD có

AN,DO là các đường trung tuyến

AN cắt DO tại H

Do đó: H là trọng tâm của ΔACD

=>\(AH=\frac23AN\) (3)

Từ (1),(2),(3) suy ra CK=AH

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

b: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của MN

=>AC,BD,MN đồng quy tại O

18 tháng 8

a) Chứng minh tứ giác \(A K H C\) là hình thoi

  • Gọi \(O\) là giao điểm hai đường chéo \(A C\)\(B D\). Trong hình thoi, \(O\) là trung điểm của cả \(A C\)\(B D\), đồng thời \(A C \bot B D\).
  • Xét tam giác \(A B C\), có \(M\) là trung điểm của \(A B\), \(O\) là trung điểm của \(A C\). Suy ra:

\(O M \parallel B C \left(\right. đườ n g t r u n g b \overset{ˋ}{\imath} n h \left.\right) .\)

  • Xét tam giác \(A C D\), có \(N\) là trung điểm của \(C D\), \(O\) là trung điểm của \(A C\). Suy ra:

\(O N \parallel A D .\)

  • \(A D \parallel B C\) (tính chất hình thoi), do đó:

\(O M \parallel O N .\)

Suy ra \(M N \parallel A C\).

  • Xét tứ giác \(A K H C\):
    • \(A , C\) nằm trên đường chéo \(A C\).
    • \(H , K\) nằm trên đường chéo \(B D\).
    • Ta có \(A C \bot B D\).

⇒ Hai đường chéo của tứ giác \(A K H C\) vuông góc nhau và cắt nhau tại trung điểm (chính là \(O\)).

Do đó \(A K H C\)hình thoi.


b) Chứng minh \(A C , B D , M N\) đồng quy

  • Từ trên, ta đã có \(M N \parallel A C\).
  • \(A C\)\(B D\) cắt nhau tại \(O\).
  • \(M N \parallel A C\), nên đường thẳng \(M N\) cắt \(B D\) tại đúng một điểm, gọi là \(P\).
  • Dễ thấy \(P\) chính là giao điểm chung của \(B D\)\(M N\). Do \(M N \parallel A C\), nên ba đường thẳng \(A C , B D , M N\) cùng đi qua một điểm:

\(A C \cap B D = O , M N \cap B D = P , m \overset{ˋ}{a} O \in M N .\)

\(A C , B D , M N\) đồng quy tại \(O\).


Kết luận:

a) Tứ giác \(A K H C\)hình thoi.
b) Ba đường thẳng \(A C , B D , M N\) đồng quy tại giao điểm \(O\).

Tham Khảo bạn nhé

6 tháng 6 2024

File: undefined chắc các bạn cũng thấy câu a) và b) ạ. Mình làm thử có thiếu sót mong bổ xung ạ.

C) gọi giao điểm của AN và CD là O 

Xét ∆ABN và ∆OCN, ta có:

NC=NB( giả thiết)

NOC = NAB ( góc so le trong)

CNO = BNA ( đối đỉnh )

=> ∆ ABN = ∆OCN ( g-c-g)

=> CO=CA ( cặp cạnh tương ứng bằng nhau)

Mà tứ giác ABCD là hình vuông 

=> AB=CD=CO hoặc CD =CO

Vì ∆APM là tam giác vuông tại P 

=> Gốc DPN =90°

Xét ∆ vuông DPO, ta có ( vì gốc DPN =90° cmt)

Ta có CD=CO ( cmt)

DPO =90°

Trong tam giác vuông đường trung tuyến ứng với cạnh huyền 

=> DC=PC=CO

=> ∆ DPC cân tại C ( vì CP= CD) ( đpcm)

 

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: ta có: DEBF là hình bình hành

nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra BD,EF,AC đồng quy

1 tháng 3 2020

Xin phép ad cho em tách ạ,nguyên 1 câu khá  là dài,hihi

1 tháng 3 2020

Nãy bận xíu :D

6 tháng 9

Dưới đây là lời giải siêu gọn, đúng trọng tâm cho từng ý:


Cho: Hình bình hành \(A B C D\),
\(K , I\) là trung điểm của \(A B , C D\);
\(M , N\) là giao điểm của \(A I , C K\) với đường chéo \(B D\).


a) \(A K C I\) là hình bình hành

\(K , I\) là trung điểm \(A B , C D\)\(K I \parallel A C\), \(K I = \frac{1}{2} A C\)
Tương tự \(A C \parallel K I\), hai cặp cạnh đối song song ⇒
\(A K C I\) là hình bình hành.


b) \(\angle M A C = \angle N C A\)\(I M \parallel C N\)

  • \(A K C I\) là hình bình hành ⇒ \(A I \parallel C K\)
    \(I M \parallel C N\) (do cùng cắt \(B D\))
  • Tam giác \(M A C\)\(N C A\) có chung \(A C\), hai góc bằng nhau ⇒
    \(\angle M A C = \angle N C A\)

c) \(D M = M N = N B\)

  • Do \(A I , C K\) cắt nhau tại trung điểm đường chéo trong hình bình hành, chia \(B D\) thành 3 đoạn bằng nhau
    ⇒ ✅ \(D M = M N = N B\)

d) \(A C , B D , I K\) đồng quy

  • \(I K\) nối trung điểm \(A B , C D\) ⇒ là đường trung bình
  • Đường chéo \(A C\) cắt \(I K\) tại 1 điểm
  • \(B D\) cũng cắt tại điểm đó (do đối xứng trung điểm)
    ⇒ ✅ \(A C , B D , I K\) đồng quy

Xong! Gọn – đủ – đúng 😎
Cần vẽ hình không?

a: Ta có: \(AK=KB=\frac{AB}{2}\)

\(DI=IC=\frac{DC}{2}\)

mà AB=DC

nên AK=KB=DI=IC

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

b: Ta có: AKCI là hình bình hành

=>AI//CK

=>\(\hat{IAC}=\hat{KCA}\)

=>\(\hat{MAC}=\hat{NCA}\)

AI//CK

=>IM//CN

c: Xét ΔDNC có

I là trung điểm của DC

IM//NC

Do đó: M là trung điểm của DN

=>DM=MN

Xét ΔABM có

K là trung điểm của BA

KN//AM

Do đó: N là trung điểm của BM

=>BN=NM

=>BN=NM=DM

d: Ta có: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra AC,KI,BD đồng quy

Bài 1. Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD thoả điều kiện gì thì tứ giác EFGH là: a) Hình chữ nhật. b) Hình thoi. c) Hình vuông. Bài 2. Cho tam giác...
Đọc tiếp

Bài 1. Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD thoả điều kiện gì thì tứ giác EFGH là:

a) Hình chữ nhật.

b) Hình thoi.

c) Hình vuông.

Bài 2. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I.

a) Tứ giác AMCK là hình gì?

b) Tứ giác AKMB là hình gì?

c) Có trường hợp nào của tam giác ABC để tứ giác AKMB là hình thoi.

ĐS: a) AMCK là hình chữ nhật b) AKMB là hình bình hành c) Không.

Bài 3. Cho tam giác ABC vuông tại A. Về phia ngoài tam giác, vẽ các hình vuông ABDE, ACGH.

a) Chứng minh tứ giác BCHE là hình thang cân.

b) Vẽ đường cao AK của tam giác ABC. Chứng minh AK, DE, GH đồng qui.

Bài 4. Cho hình thang cân ABCD với AB // CD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì?

b) Cho biết diện tích tứ giác ABCD bằng \(30m^2\). Tính diện tích tứ giác MNPQ.

Bài 5. Cho tam giác ABC vuông tại A, trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng của điểm M qua điểm D.

a) Chứng minh điểm E đối xứng với điểm M qua đường thẳng AB.

b) Các tứ giác AEMC, AEBM là hình gì?

c) Cho BC = 4cm. Tính chu vi tứ giác AEBM.

d) Tam giác vuông thoả điều kiện gì thì AEBM là hình vuông.

Bài 6. Cho hình bình hành ABCD, O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Các đường thẳng BM, DN cắt đường chéo AC tại P, Q.

a) Chứng minh AP = PQ = QC.

b) Tứ giác MPNQ là hình gì?

c) Xác định tỉ số \(\frac{CA}{CD}\) để MPNQ là hình chữ nhật.

d) Xác định góc ACD để MPNQ là hình thoi.

e) Tam giác ACD thoả mãn điều kiện gì để MPNQ là hình vuông.

Bài 7. Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B song song với AC, đường thẳng qua C song song với BD, hai đường thẳng đó cắt nhau ở K.

a) Tứ giác OBKC là hình gì?

b) Chứng minh AB = OK.

c) Tìm điều kiện của hình thoi ABCD để OBKC là hình vuông.

ĐS: a) OBKC là hình chữ nhật c) ABCD là hình vuông.

Bài 8. Cho hình bình hành ABCD có BC = 2AB và góc A =600. Gọi E, F lần lượt là trung điểm của BC và AD.

a) Tứ giác ECDF là hình gì?

b) Tứ giác ABED là hình gì?

c) Tính số đo của góc AED.

Bài 9. Cho hình thang ABCD (AB // CD). Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi O là trung điểm của EF. Qua O vẽ đường thẳng song song với AB, cắt AD và BC theo thứ tự tại M và N.

a) Tứ giác EMFN là hình gì?

b) Hình thang ABCD có thêm điều kiện gì để EMFN là hình thoi.

c) Hình thang ABCD có thêm điều kiện gì để EMFN là hình vuông.

Bài 10. Cho tam giác ABC vuông tại A với AB = AC = a.

a) Lấy điểm D trên cạnh AC và điểm E trên cạnh AB sao cho AD = AE. Các đường thẳng vuông góc với EC vẽ từ A và D lần lượt cắt cạnh BC ở K và L. Chứng minh BK = KL.

b) Một hình chữ nhật APMN thay đổi có đỉnh P trên cạnh AB, đỉnh N trên cạnh AC và có chu vi luôn bằng \(2a\). Điểm M di chuyển trên đường nào?

c) Chứng minh khi hình chữ nhật APMN thay đổi thì đường vuông góc vẽ từ M xuống đường chéo PN luôn đi qua một điểm cố định.

ĐS: b) M di chuyển trên cạnh BC c) HM đi qua điểm I cố định (với ACIB là hình vuông).

Bài 11. Cho hình vuông ABCD. E là điểm trên cạnh DC, F là điểm trên tia đối của tia BC sao cho BF = DE.

a) Chứng minh tam giác AEF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh I thuộc BD.

c) Lấy điểm K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.

Bài 12. Cho hình bình hành ABCD có AD = 2AB, góc A=600. Gọi E và F lần lượt là trung điểm của BC và AD.

a) Chứng minh AE\(\perp\)BF.

b) Chứng minh tứ giác BFDC là hình thang cân.

c) Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d) Chứng minh ba điểm M, E, D thẳng hàng.

Bài 13. Cho tam giác ABC vuông tại A có \(\widehat{BAC}=\)900. Kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.

a) Tính số đo các góc BAD, DAC

b) Chứng minh tứ giác ABCD là hình thang cân.

c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.

Bài 14. Cho ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi K là giao điểm của AC và DM, L là trung điểm của BD và CM.

a) Tứ giác MNPQ là hình gì?

b) Tứ giác MDPB là hình gì?

c) Chứng minh: AK = KL = LC.

Bài 15. Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.

a) Các tứ giác AEFD, AECF là hình gì?

b) Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

c) Hình bình hành ABCD nói trên có thêm điều kiện gì để EMFN là hình vuông?

Bài 16. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.

a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.

b) Chứng minh rằng H đối xứng với K qua A.

c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?

23
15 tháng 12 2016

bạn có nikc face ko. vô đó mk gửi bài qua cho

28 tháng 7 2017

Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên