K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Giải bài tập Toán 11 | Giải Toán lớp 11

I là giao điểm AC và BD nên I là trung điểm của AC và BD

Mà AC = BD ⇒ AI = BI = 1/2 AC = 1/2 BD

Gọi E, F theo thứ tự là trung điểm của AD và BC ⇒ EF là đường trung bình của hình chữ nhật ABCD và AE = BF = 1/2 AD = 1/2 BC

⇒ EF // AB ⇒ EF vuông góc với AD và EF vuông góc với BC

Xét hai tam giác vuông AEI và BFI có:

AI = BI

AE = BF

⇒ ΔAEI = ΔBFI (cạnh huyền – cạnh góc vuông)

⇒ EI = FI (hai cạnh tương ứng)

⇒ I là trung điểm EF

Do đó, phép đối xứng qua tâm I biến hình thang AEIB thành hình thang CFID

⇒ Hai hình thang AEIB và CFID bằng nhau

18 tháng 1 2017

Giải bài 2 trang 33 sgk Hình học 11 | Để học tốt Toán 11

+ I là trung điểm AC; BD; HK

⇒ ĐI(H) = K ; ĐI(D) = B ; ĐI (C) = A.

⇒ Hình thang IKBA đối xứng với hình thang IHDC qua I (1)

+ J; L; K; I lần lượt là trung điểm của CI; CK; CB; CA

Giải bài 2 trang 33 sgk Hình học 11 | Để học tốt Toán 11

⇒ Hình thang JLKI là ảnh của hình thang IKBA qua phép vị tự tâm C tỉ số 1/2.

⇒ Hình thang JLKI là ảnh của hình thang IHDC qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng tâm I và phép vị tự tâm C tỉ số 1/2.

⇒ IJKI và IHDC đồng dạng.

31 tháng 3 2017

Phép vị tự tâm C tỉ số 2 biến hình thang JLKI thành hình thang IKBA. Phép đối xứng tâm I biến hình thang IKBA thành hình thang IHDC. Do đó hai hình thang JLKI và IHDC đồng dạng với nhau.

31 tháng 3 2017

undefined

Gọi L là trung điểm của đoạn thẳng OF. Ta thấy phép đối xứng qua đường thẳng EH biến hình thang AEJK thành hình thang BELF, phép tịnh tiến theo vectơ BF biến hình thang BELF thành hình thang FOIC. Như vậy phép dời hình có được bằng cách thực hiện liên tiếp phép biến hình trên, sẽ biến hình thang AEJK thành hình thang FOIC. Do đó hai hình thang AEJK và FOIC bằng nhau.

31 tháng 3 2017

Gọi L là trung điểm của đoạn thẳng OF.

Ta thấy phép đối xứng qua đường thẳng EH biến hình thang AEJK thành hình thang BELF, phép tịnh tiến theo vectơ BF biến hình thang BELF thành hình thang FOIC. Như vậy phép dời hình có được bằng cách thực hiện liên tiếp phép biến hình trên, sẽ biến hình thang AEJK thành hình thang FOIC. Do đó hai hình thang AEJK và FOIC bằng nhau.


1 tháng 3 2018

Giải bài 2 trang 24 sgk Hình học 11 | Để học tốt Toán 11

Gọi L là trung điểm của OF.

+ Vì EO là đường trung trực của các đoạn thẳng AB; KF; JL

⇒ B = ĐEO (A); F = ĐEO (K) ; L = ĐEO (J); E = ĐEO (E)

⇒ Hình thang BFLE là ảnh của hình thang AKJE qua phép đối xứng trục EO.

⇒ Hai hình thang BFLE và AKJE bằng nhau (1)

Giải bài 2 trang 24 sgk Hình học 11 | Để học tốt Toán 11

⇒ Hình thang FCIO là ảnh của hình thang BFLE qua phép tịnh tiến theo Giải bài 2 trang 24 sgk Hình học 11 | Để học tốt Toán 11

⇒ Hai hình thang FCIO và BFLE bằng nhau (2)

 

Từ (1) và (2) ⇒ hai hình thang FCIO và AKJE bằng nhau.

11 tháng 12 2023

a: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

b: Xét ΔSAB có

M,N lần lượt là trung điểm của AS,AB

=>MN là đường trung bình của ΔSAB

=>MN//SB

Ta có: MN//SB

SB\(\subset\)(SBC)

MN ko nằm trong mp(SBC)

Do đó: MN//(SBC)

1 tháng 1 2017

10 tháng 11 2023

loading...  loading...  loading...  loading...  loading...  loading...  loading...  

19 tháng 3 2016

F D A B C M N

Đặt \(\frac{AB}{CD}=k\)

Do AB // CD nên \(\frac{EA}{EC}=\frac{EB}{ED}=k\) và  \(\frac{FA}{FD}=\frac{FB}{FC}=k\) (như hình vẽ)

Suy ra : \(\overrightarrow{EA}=-k\overrightarrow{EC}\)\(\overrightarrow{EB}=-k\overrightarrow{ED}\) , \(\overrightarrow{FA}=-k\overrightarrow{FD}\) và \(\overrightarrow{FB}=-k\overrightarrow{FC}\)

Do M là trung điểm AB và N là trung điểm CD nên :

\(2\overrightarrow{EM}=\overrightarrow{EA}+\overrightarrow{EB}=-k\overrightarrow{EC}-k\overrightarrow{ED}=-2\left(\overrightarrow{EC}+\overrightarrow{ED}\right)=-2k\overrightarrow{EN}\)

Suy ra \(\overrightarrow{EM}=k\overrightarrow{EN}\) (1)

Hoàn toàn tương tự cũng được \(\overrightarrow{FM}=k\overrightarrow{FN}\) (2)

Từ (1) và (2) suy ra điều cần chứng minh

3 tháng 8 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi H là trung điểm của SC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi M’ là trung điểm của SA ⇒ MM′ // AD và MM′ = AD/2.

Mặt khác vì BC // AD và BC = AD/2 nên BC // MM′ và BC = MM′.

Do đó tứ giác BCMM’ là hình bình hành ⇒ CM // BM′ mà BM′ ⊂ (SAB)

⇒ CM // (SAB)

c) Ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác vì Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

OI ⊂ (BID) ⇒ SA // (BID)