K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Gọi I là trung điểm của HD

Bạn chứng minh IM là đường trung bình của tam giác HDC

=> IM//DC và IM=1/2.DC

=> IM//AN và IM=AN ( Vì AN=1/2.AB và DC=AB )

=> ANMI là hình bình hành 

=> AI//MN

Vì MI//DC mà DC vuông góc với AD nên MI vuông góc với AD

=> I là trưc tâm của ΔAMD

=> AI vuông góc với DM

Lại có AI//MN

=> MN vuông góc với DM

=> Đpcm

Chúc bạn làm bài tốt

29 tháng 9 2018

A B C D H M I K            

Gọi K là trung điểm của DH.

MK là đường trung bình của \(\Delta HDC\Rightarrow\hept{\begin{cases}KM//DC\\KM=\frac{1}{2}DC\end{cases}\Rightarrow\hept{\begin{cases}KM//AI\left(1\right)\\KM=\frac{1}{2}AB\end{cases}}}\)  (do DC//AI và CD = AB)

Ta có: KM // DC (cmt) và \(DC\perp AD\left(gt\right)\Rightarrow KM\perp AD\)

C/m được K là trực tâm của \(\Delta ADM\Rightarrow AK\perp DM\)

\(\Rightarrow AK//IM\) (vì IM vuông góc với DM) (2)

Từ (1) và (2), ta được AKMI là hình bình hành.

\(\Rightarrow AI=KM=\frac{1}{2}AB\)

\(AI+IB=AB\Rightarrow\frac{1}{2}AB+IB=AB\Rightarrow IB=\frac{1}{2}AB\)

Vậy AI = BI.

19 tháng 7 2018

Gọi N là trung điểm của HD .

Ta có : MN là đường trung bình của tam giác HDC 

\(\Rightarrow MN//DC\)

\(MN=\frac{1}{2}DC\) (T/c đường TB )

Ta lại có : 

\(AB//DC\)và  \(AB=MN\)

=> ABMN là hình bình hành .

\(\Rightarrow AN//BM\)(1)

Xét tam giác ADM có :

\(\hept{\begin{cases}DH\perp AM\\MN\perp AD\end{cases}}\)

\(\Rightarrow AN\perp DM\)(2)

Từ (1) và (2)

\(\Rightarrow\widehat{BMD}=90^o\)(đpcm)

19 tháng 7 2018

A B C D H M N

18 tháng 4 2016

họ hỏi gì?