Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D H M I K
Gọi K là trung điểm của DH.
MK là đường trung bình của \(\Delta HDC\Rightarrow\hept{\begin{cases}KM//DC\\KM=\frac{1}{2}DC\end{cases}\Rightarrow\hept{\begin{cases}KM//AI\left(1\right)\\KM=\frac{1}{2}AB\end{cases}}}\) (do DC//AI và CD = AB)
Ta có: KM // DC (cmt) và \(DC\perp AD\left(gt\right)\Rightarrow KM\perp AD\)
C/m được K là trực tâm của \(\Delta ADM\Rightarrow AK\perp DM\)
\(\Rightarrow AK//IM\) (vì IM vuông góc với DM) (2)
Từ (1) và (2), ta được AKMI là hình bình hành.
\(\Rightarrow AI=KM=\frac{1}{2}AB\)
\(AI+IB=AB\Rightarrow\frac{1}{2}AB+IB=AB\Rightarrow IB=\frac{1}{2}AB\)
Vậy AI = BI.
![](https://rs.olm.vn/images/avt/0.png?1311)
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh