Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H M N P K
a) Ta có:AB = CD (gt) \(\Rightarrow\)\(\frac{AB}{2}=\frac{CD}{2}\)
Mà \(\frac{AB}{2}=BM\)(vì M là trung điểm của AB)
và \(\frac{CD}{2}=CP\)(vì P là trung điểm của CD)
\(\Rightarrow\)BM = CP (1)
Ta lại có: \(M\in AB\)và \(P\in CD\)
\(\Rightarrow MP=BC\)(2)
Từ (1) và (2), suy ra: MBCP là hình chữ nhật (đpcm)
b) Gọi K là trung điểm của BH \(\Rightarrow\)NK đường trung bình của \(\Delta ABH\)
Ta có NK//AB và NK = \(\frac{1}{2}AB\)
Mà CP//AB và CP =\(\frac{1}{2}CD=\frac{1}{2}AB\Rightarrow NK=CP\)
\(\Rightarrow\)NKCP là hình bình hành
\(\Rightarrow\)NK//CP (1)
Vì NK//AB , AB\(\perp\)BC nên NK\(\perp\)BC
Suy ra K là trực tâm \(\Delta BCM\); \(CK\perp BN\)(2)
Từ (1) và (2), suy ra: BN vưông góc NP (đpcm)
a: Xét ΔAHD có
M là trung điểm của HA
N là trung điểm của HD
Do đó: MN là đường trung bình của ΔAHD
Suy ra: MN//AD
a) Xét tam giác AHB có:
M,N lần lượt là trung điểm các đoạn thẳng AH,BH (gt).
\(\Rightarrow\) MN là đường trung bình.
\(\Rightarrow\) MN // AB (Tính chất đường trung bình trong tam giác).
b) Xét tam giác AHB có: MN là đường trung bình (cmt).
\(\Rightarrow\) MN = \(\dfrac{1}{2}\) AB (Tính chất đường trung bình trong tam giác).
Mà AB = CD (ABCD là hình chữ nhật).
\(\Rightarrow\) MN = \(\dfrac{1}{2}\) AB = \(\dfrac{1}{2}\) CD.
Vì ABCD là hình chữ nhật (gt). \(\Rightarrow\) AB // CD (Tính chất hình chữ nhật).
Mà MN // AB (cmt).
\(\Rightarrow\) MN // AB // CD.
Xét tứ giác MNED:
+ MN // DE (MN // CD).
+ MN = DE (cùng = \(\dfrac{1}{2}\) CD).
\(\Rightarrow\) Tứ giác MNED là hình bình hành (dhnb).