K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

Dễ chứng minh \(\Delta ABD=\Delta BAC\) (c.g.c)

\(\Rightarrow\widehat{DBA}=\widehat{CAB}\Rightarrow\Delta OAB\text{ cân tại O}\Rightarrow OA=OB\) (1)

Mặt khác cũng do \(\Delta ABD=\Delta BAC\) suy ra BD = AC hay OB + OD = OA + OC

Do (1) suy ra OD = OC (2)

Nhân theo từng vế hai đẳng thức (1) và (2) ta được đpcm: OA . OD = OB . OC

P/s: Thực ra ban đầu em chẳng có ý tưởng thế này đâu. Nhưng vừa làm xong bài Câu hỏi của Nguyễn Thị Phương Uyên nên mới nghĩ ra hướng chứng minh tương tự thế này đấy ạ:)

20 tháng 3 2020

sao cm đc abd = bac vậy

1 tháng 9 2021

a: Xét ΔACD và ΔBDC có

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: ˆACD=ˆBDCACD^=BDC^

hay ˆODC=ˆOCDODC^=OCD^

Xét ΔOCD có ˆODC=ˆOCDODC^=OCD^

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

21 tháng 8 2017

a) Ta có MN và PQ lần lượt là các đường trung bình của các tam giác AOB và COD mà AB // CD và AB = CD nên MN // PQ và MN = PQ

⇒ Tứ giác MNPQ là hình bình hành.

Tương tự NP // BC mà AB ⊥ BC nên MN ⊥ NP. Do đó MNPQ là hình chữ nhật.

Trong ΔABC ta có

Vậy SMNPQ = MN.PQ = 3.4 = 12 (cm2).

b)Dễ thấy ΔAOB = ΔCOD (c.c.c).

Tương tự ΔMON = ΔPOQ

Do đó: SAOB = SCOD và SMON = SPOQ.

⇒ SAOB - SMON = SCOD - SPOQ hay SAMNB = SCPQD.

7 tháng 3 2019

* Ta có: OA = OB nên tam giác OAB cân tại O

* Do OC = OD nên tam giác OCD cân tại O

* vì OA = OB và OC = OD nên OA + OC = OB + OD

Hay AC = BD

Hình thang ABCD có hai đường chéo AC = BD nên đây là hình thang cân.

Suy ra: BC = AD và  B A D ^ =   A B C ^ ;   A D C ^   =   D C B ^

Chọn đáp án D

24:

Xét ΔOMA vuông tại M và ΔOMB vuông tại M có

OM chung

MA=MB

=>ΔOMA=ΔOMB

=>OA=OB

24 tháng 6 2019

Câu hỏi của Nguyễn Thị Phương Uyên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo link trên.

21 tháng 10 2021

1) Vì ABCD là hình bình hành

=> OA=OC, OB=OD

Ta có: OM=OA/2

           OP=OC/2

Mà OA=OC => OM=OP

Cm tương tự ta được OQ=ON

Tứ giác MNPQ có OM=OP. OQ=ON

=> MNPQ là hình bình hành

2) Tứ giác ANCQ có OA=OC (cmt), OQ=ON (cmt)

Suy ra tứ giác ANCQ là hình bình hành

Tứ giác BPDM có OB=OD (cmt), OM=OP (cmt)

Suy ra tứ giác BPDM là hình bình hành

6 tháng 7 2018

Ta có:

\(OA=OB;OC=OD\)

\(\Rightarrow AC=BD\)

Theo lý thuyết, tứ giác có 2 đường chéo bằng nhau là tứ giác cân

Vậy ABCD là hình thang cân

27 tháng 6 2019

\(\text{https://olm.vn/hoi-dap/detail/223869533876.html}\)