Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho hình chữ nhật ABCD có diện tích 216 cm2. Trên các cạnh AB, BC, CD và DA lần lượt lấy các điểm M, N, P, Q sao cho AM = MB, BN = 2/3 BC, CP = 2/3 CD và DQ = QA. Tính diện tích hình MNPQ?
![](https://rs.olm.vn/images/avt/0.png?1311)
HD:
Tính diện tích các tam giác vuông: AMQ; MBN; NCP và PDQ
Lấy diện tích hình chữ nhật ABCD trừ đi tổng diện tích 4 tam giác vuông trên sẽ được diện tích hình tứ giác MNPQ
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: SAMP = 1212x AM x AP = 1212x (3434x AB) x (1212 x AD) = (1212 x3434 x 1212) x AB x AD = 316316x SABCD = 316316 x 192 = 36 cm2
SDPQ = 1212 x PD x DQ = 1212 x (1212x AD) x (1212x DC) = 1818x AD x DC = 1818x SABCD = 1818x 192 = 24 cm2
Tương tự, SNCQ = 320320x SABCD = 28,8 cm2 ; SBMN = 120120x SABCD = 9,6 cm2
=> SMNPQ = SABCD - ( SAMP + SDPQ + SNCQ + SBMN ) = 192 - (36 + 24 + 28,8 + 9,6) = 93,6 cm2
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
Kiến thức mình còn kém nên không biết làm, nhờ các cậu giúp cho !
Đề của mình được trích từ Đề thi thử vào lớp 6, năm 2014 !
A B C D M N P Q
Nối B với D; B với P
Ta có SBPC = \(\frac{2}{3}\)SBDC (chung chiều cao hạ từ đỉnh B xuống CD; đáy CP = \(\frac{2}{3}\) CD )
SNPC = \(\frac{2}{3}\)SBPC (chung chiều cao hạ từ đỉnh P xuống BC; đáy NC = \(\frac{2}{3}\) CB)
=> SNPC = \(\frac{2}{3}\) x \(\frac{2}{3}\)SBDC = \(\frac{4}{9}\)SBDC = \(\frac{4}{9}\)x \(\frac{1}{2}\) SABCD = \(\frac{2}{9}\)SABCD
Tương tự; SBMN = \(\frac{1}{24}\)SABCD; SAMQ = \(\frac{9}{32}\)SABCD; SDPQ = \(\frac{1}{24}\) SABCD
vậy SNPC + SBMN + SAMQ + SDPQ = \(\left(\frac{2}{9}+\frac{1}{24}+\frac{9}{32}+\frac{1}{24}\right)\)SABCD = \(\frac{169}{288}\)SABCD = \(\frac{169}{288}\). 1152 = 676
=> S MNPQ = 1152 - 676 = 476 cm vuông
![](https://rs.olm.vn/images/avt/0.png?1311)
SQAM = SQDP = \(\dfrac{1}{6}\) SABCD = 48 cm2
SMBN = SPNC = \(\dfrac{1}{12}\) SABCD = 24 cm2
Diện tích hình MNPQ là:
288 - (48 + 24) x 2 = 144 (cm2)
Đáp số: 144 cm2
Kẻ 2 đường chéo của MNPQ lần lượt là MP; NQ
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì BN = NC ; DQ = QA
=> Vì BC =AD=> BN = NC = DQ = QA
=> Kẻ đường chéo thứ 2 từ N sang Q = Chiều dài của hcn ABCD
=> SMNPQ = NQ*MP : 2
Mà NQ = AB và MP = BC
=> SMNPQ = AB* BC : 2
Mà AB*BC= 288
=> SMNPQ = 288 : 2
SMNPQ = 144 (cm2)
A B C D M N P Q H K Kẻ NH và QK lần lượt vuông góc với MP .
ta có : SMNPQ= SMNP+ SMQP=1/2*NH*MP+1/2*QK*MP
Dễ chứng minh được : NH=2/3AB ; MP = BC ; QK = 1/3AB
=> SMNPQ= 1/2*2/3AB*BC+1/2*1/3AB*BC=1/3*324+1/6*324=108+54=162(cm2 )