K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Hình vẽ đâu rồi bạn?

6 tháng 8 2023

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a ) Xét ADC và BCD, ta có:

AD = BC (tính chất hình thang cân)

(ADC) = (BCD) (gt)

DC chung

Do đó: ADC = BCD (c.g.c) ⇒ ∠�1∠�1

Trong OCD ta có: ∠�1∠�1 ⇒ OCD cân tại O ⇒ OC = OD (1)

AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO.

b)

 

���^=���^(��)⇒���^=���^ 

⇒ ∆ OCD cân tại O

⇒ OC = OD

⇒ OA + AD = OB + BC

Mà AD = BC (tính chất hình thang cân)

⇒ OA = OB

Xét ∆ ADC và ∆ BCD :

AD = BC (chứng minh trên)

AC = BD (tính chất hình thang cân)

CD cạnh chung

Do đó: ∆ ADC = ∆ BCD (c.c.c)

⇒�^1=�^1

⇒ ∆ EDC cân tại E

⇒ EC = ED nên E thuộc đường trung trực của CD

OC = OD nên O thuộc đường trung trực của CD

E≢ O. Vậy OE là đường trung trực của CD.

BD = AC (chứng minh trên)

⇒ EB + ED = EA + EC mà ED = EC

⇒ EB = EA nên E thuộc đường trung trực AB

E≢ O. Vậy OE là đường trung trực của AB.

21 tháng 8 2017

a) Ta có MN và PQ lần lượt là các đường trung bình của các tam giác AOB và COD mà AB // CD và AB = CD nên MN // PQ và MN = PQ

⇒ Tứ giác MNPQ là hình bình hành.

Tương tự NP // BC mà AB ⊥ BC nên MN ⊥ NP. Do đó MNPQ là hình chữ nhật.

Trong ΔABC ta có

Vậy SMNPQ = MN.PQ = 3.4 = 12 (cm2).

b)Dễ thấy ΔAOB = ΔCOD (c.c.c).

Tương tự ΔMON = ΔPOQ

Do đó: SAOB = SCOD và SMON = SPOQ.

⇒ SAOB - SMON = SCOD - SPOQ hay SAMNB = SCPQD.

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:                 a) OA=OB , OC=OD                 b) EO là đường trung trực của hai đáy hình thang ABCD.     Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ                 a) Chứng minh ABCD là hình thang cân        ...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

   Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ

                a) Chứng minh ABCD là hình thang cân

                 b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.

     Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE

                  a) Tứ giác BDEC là hình gì ? Vì sao?

                  b) Các điểm D,E ở vị trí nào thì BD=DE=EC?

             Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn

   
0
Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:                 a) OA=OB , OC=OD                 b) EO là đường trung trực của hai đáy hình thang ABCD.     Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ                 a) Chứng minh ABCD là hình thang cân        ...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

   Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ

                a) Chứng minh ABCD là hình thang cân

                 b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.

     Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE

                  a) Tứ giác BDEC là hình gì ? Vì sao?

                  b) Các điểm D,E ở vị trí nào thì BD=DE=EC?

             Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn

 

0
5 tháng 10 2019

Áp dụng địnhlý Pytago, ta tính được AB = 24cm. Vì M, N, P, Q lần lượt là trung điểm của OA, OB, OC, OD nên sử dụng tính chất của các đường trung bình, ta chứng minh được MNNPQ là hình chữ nhật.

Đồng thời, ta có:   M N = 1 2 A B = 12 c m , M Q = 1 2 A D = 3 , 5 c m

Þ SMNPQ = MN.MQ = 42cm2

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành