Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác \(\Delta ABE\&\Delta ADF\) là hai tam giác vuông có \(\angle ADF=\angle ABE\to\Delta ABE\sim\Delta ADF\) (cạnh huyền góc nhọn). Suy ra \(\frac{AE}{AF}=\frac{AB}{AD}.\) (Bạn ghi nhầm thành \(\frac{AB}{BD}\) nhé).
b) Vì M là trung điểm AB nên \(S_{AMC}=S_{BMC}\to S_{AMC}=\frac{1}{2}S_{ABC}.\)
Tương tự, vì N là trung điểm AD nên \(S_{ACN}=S_{CDN}\to S_{ACN}=\frac{1}{2}S_{ACD}.\)
Vậy \(S_{AMCN}=S_{AMC}+S_{ACN}=\frac{1}{2}S_{ABC}+\frac{1}{2}S_{ACD}=\frac{1}{2}S_{ABCD}\). (ĐPCM)
Lời giải:
a) Ta có:
$\frac{S_{AMN}}{S_{AMC}}=\frac{AN}{AC}$
$\frac{S_{AMC}}{S_{ABC}}=\frac{AM}{AB}$
Nhân theo vế thu được:
$\frac{S_{AMN}}{S_{ABC}}=\frac{AN.AM}{AC.AB}$
b)
Vì $AB=AC, AM=CN\Rightarrow AB-AM=AC-CN$ hay $BM=AN$
Do đó:
$\frac{S_{AMN}}{S_{ABC}}=\frac{AM.BM}{AB.AC}=\frac{AM.BM}{AB^2}$
Áp dụng BĐT AM-GM:
$AM.BM\leq \left(\frac{AM+BM}{2}\right)^2=\frac{AB^2}{4}$
$\Rightarrow \frac{S_{AMN}}{S_{ABC}}\leq \frac{AB^2}{4.AB^2}=\frac{1}{4}$
$\Rightarrow S_{AMN}\leq \frac{S_{ABC}}{4}$
Vậy $S_{AMN}$ max bằng $\frac{S_{ABC}}{4}$ khi $AM=BM$ hay $M$ là trung điểm của $AB$, kéo theo $N$ là trung điểm $AC$
Vậy......