Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
** M là trung điểm của AB đúng không bạn?
a.
\(|\overrightarrow{AM}+\overrightarrow{AB}|=|\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AB}|=\frac{3}{2}|\overrightarrow{AB}|=\frac{3}{2}.3a=\frac{9a}{2}\)
b.
\(|\overrightarrow{AB}+\overrightarrow{CD}|=|\overrightarrow{AB}+\overrightarrow{BA}|=|\overrightarrow{0}|=0\)
c.Trên $CD$ lấy $K$ sao cho $CK=a$. Khi đó:
\(|\overrightarrow{DN}+\overrightarrow{BN}|=|\overrightarrow{DN}+\overrightarrow{KD}|=|\overrightarrow{KN}|=KN=\sqrt{a^2+a^2}=\sqrt{2}a\)
Lời giải:
$\overrightarrow{CM}.\overrightarrow{BN}=(\overrightarrow{CA}+\overrightarrow{AM})(\overrightarrow{BA}+\overrightarrow{AN})$
$=\overrightarrow{CA}.\overrightarrow{BA}+\overrightarrow{CA}.\overrightarrow{AN}+\overrightarrow{AM}.\overrightarrow{BA}+\overrightarrow{AM}.\overrightarrow{AN}$
$=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{CA}.\frac{1}{4}\overrightarrow{AC}+\frac{1}{5}\overrightarrow{AB}.\overrightarrow{BA}+\frac{1}{5}\overrightarrow{AB}.\frac{1}{4}\overrightarrow{AC}$
$=\frac{21}{20}\overrightarrow{AB}.\overrightarrow{AC}-\frac{1}{4}AC^2-\frac{1}{5}AB^2$
$=\frac{21}{20}\cos A.|\overrightarrow{AB}|.|\overrightarrow{AC}|-\frac{1}{4}AC^2-\frac{1}{5}AB^2$
$=\frac{21}{20}.\frac{1}{2}.5.8-\frac{1}{4}.8^2-\frac{1}{5}.5^2=0$
$\Rightarrow CM\perp BN$
\(\Leftrightarrow3\overrightarrow{AM}=2\overrightarrow{AC}\)
\(\Leftrightarrow\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AC}\)
Vậy M là điểm nằm trên đoạn thẳng AC sao cho \(AM=\frac{2}{3}AC\)
Từ M kẻ đường thẳng song song với AB, cắt AD tại E.
Khi đó tứ giác ABME là hình bình hành.
Do đó: \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AE} \).
Dễ thấy: \(AE = BM = \frac{1}{2}BC = \frac{1}{2}AD\)
\( \Rightarrow \overrightarrow {AE} = \frac{1}{2}\overrightarrow {AD} \)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \)
Vậy \(\overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \)
Chú ý khi giải
+) Dựng hình hình hành sao cho đường chéo là vecto cần biểu thị, 2 cạnh của nó song song với giá của hai vecto đang biểu thị theo.