K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
23 tháng 8 2015
Theo định lý Ta-let \(\frac{IA}{IC}=\frac{IM}{ID}=\frac{AM}{CD}=\frac{1}{2}\to IA=\frac{1}{2}IC,ID=2IM\to IA=\frac{1}{3}AC,ID=\frac{2}{3}DM.\)
Mà theo định lý Pitago:
\(AC^2=AD^2+DC^2=3a^2,MD^2=\left(\frac{a}{2}\right)^2+\left(a\sqrt{2}\right)^2=\frac{9a^2}{4}\to AC=a\sqrt{3},MD=\frac{3a}{2}\)
Vậy ta có \(IA=\frac{1}{3}\cdot a\sqrt{3}=\frac{a\sqrt{3}}{3},ID=\frac{2}{3}\cdot\frac{3a}{2}=a\to IA+ID=\frac{a\sqrt{3}}{3}+a=\frac{\left(3+\sqrt{3}\right)a}{3}.\)
a: Xét ΔCBM vuông tại C và ΔBAC vuông tại B có
CB/BA=CM/BC
=>ΔCBM đồng dạng với ΔBAC
=>góc CBM=góc BAC
=>góc CBM+góc ACB=90 độ
=>MB vuông góc AC
b: \(MC=\dfrac{a\sqrt{2}}{2}\)
\(AM=\sqrt{AD^2+DM^2}=\dfrac{\sqrt{6}}{2}a\)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{3}\)
\(cosMAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}=\dfrac{2\sqrt{2}}{3}\)
=>sin MAC=1/3