K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACB vuông tại A có

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔACB

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AH}{AB}\)

hay \(AC\cdot AH=AB^2\)

19 tháng 8 2021

undefined

Xét ΔABH và ΔACB có:

∠BHA = ∠CBA = 90o

∠BAH = ∠CAB (góc chung)

⇒ Hai tam giác đồng dạng

⇒ BA/CA = AB/AH

⇒ AB2 = AC.AH

Xét ΔABH vuông tại H và ΔACB vuông tại B có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔACB

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AH}{AB}\)

hay \(AB^2=AC\cdot AH\)

29 tháng 10 2023

a: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC^2=4^2+3^2=25\)

=>AC=5(cm)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>BH*5=3*4=12

=>BH=2,4(cm)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)

=>\(\widehat{BAC}\simeq37^0\)

b: Xét ΔABE vuông tại A có AH là đường cao

nên \(BH\cdot BE=BA^2\)(1)

Xét ΔABC vuông tại B có BH là đường cao

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có

\(\widehat{HBC}\) chung

Do đó: ΔBHC\(\sim\)ΔBFE

=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)

=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)

Xét ΔBHF và ΔBCE có

BH/BC=BF/BE

\(\widehat{HBF}\) chung

Do đó: ΔBHF\(\sim\)ΔBCE

 

a: BC=căn 6^2+8^2=10cm

BH=AB^2/BC=3,6cm

CH=10-3,6=6,4cm

sin ABC=AC/BC=4/5

=>góc ABC=53 độ

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

c: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

góc KAC+góc AFE

=góc AHE+góc KCA

=góc ABC+góc ACB=90 độ

=>AK vuông góc EF

2)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow DE^2=2\cdot4.5=9\)

hay DE=3(cm)

b) Xét ΔABH vuông tại H có

\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{3}{2}\)

nên \(\widehat{ABC}\simeq56^0\)

12 tháng 7 2021

undefined

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

30 tháng 9 2021

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

30 tháng 9 2021

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm

2 tháng 11 2015

Hình bạn tự vẽ nha :v 
a, áp dụng định lý pytago vào tam giác ABC có góc BAC =90 ta đc : BC2=AC2+AB thay vào là đc nha
áp dụng hệ thức lượng vào tam giác ABC có góc BAC=90 ta dc :AH.BC=AB.AC thay vào là đc nha
Mà AM=1/2 BC thay vào nha :v
b, Xét tam giác ABE và tam giác ABF có : góc ABF - góc chung và góc AEB= góc BAF=90 => tam giác ABE đồng dạng tam giác FBA => BE/BA=AB/FB=> BE.FB=AB2(1)
áp dụng hệ thức lượng vào tam giác ABC có góc BAC=90  ta đc : AB2 =BH.BC(2)
từ  (1) và (2) => dpcm