Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tự kẻ hình nha!!
Gọi I là trung điểm của AH
Ta có IM là đg trug bình t.giác AHB
- -> IM=1/2AB và IM sog sog vs AB
- ->IMND là hình bình hành
- ->DI sog sog vs MN(1)
Do IM sog sog vs AB->IM vuông góc vs AD
Tg ADM có các đg cao AH và MI cắt nhau tại I
- -> DI vuông góc vs AM(2)
Từ (1) và (2) suy ra AM vuông góc vs MN
Tg AMN vuông tại M
Ta có :AM^2+MN^2=AN^2
Lại có:Tg ADN vuông tại D
- ->AN^2=AD^2+DN^2+AD^2/4=4^2+3^2=25
- Vậy MA^2+NM^2=25
vì sao IMND là hình bình hành vậy.
Nếu bài này ko cm như trên mà chứng minh MA vuông góc MN thì làm như nào ạ .
a: Xét tứ giác ANCM có
AM//CN
AM=CN
Do đó: ANCM là hình bình hành
Cái hình câu 1 logic lắm !!!
đáng lẽ cái đường thẳng E nó pk trùng với cái tia chéo kia ( tia tia tui vẽ cx chả đều => lười sửa )
phần còn lại tự giải quyết
hk tốt
a: Xét ΔODK có AH//DK
nên AH/DK=OH/OK
Xét ΔOKC có HB//KC
nên HB/KC=OH/OK
=>AH/DK=HB/KC
mà AH=HB
nên DK=KC
=>K là trung điểm của CD
b: Xét ΔMAB và ΔMKD có
góc MAB=góc MKD
góc AMB=góc KMD
Do đo: ΔMAB đồng dạng với ΔMKD
=>MA/MK=AB/DK
=>MK/MA=DK/AB
Xét ΔNKC và ΔNBA có
góc NKC=góc NBA
góc KNC=góc BNA
Do đó: ΔNKC đồng dạng với ΔNBA
=>NK/NB=KC/BA=KD/AB=MK/MA
=>MN//AB
xét tg ADH và tg BCK có: ^AHD=^BKC=90 ; AD=BC( vì tg ABCD là hthang cân); ^ADH =^BCK (vì tg ABCD là hthang cân)
=> tg ADH=tg BCK (ch-gn) => DH=CK
b) xét hthang ABCD có: M là t/đ của AD(gt) và N là t/đ của BC(gt)=> MN là đg trung bình của hthang ABCD => MN//AB//CD
và MN= 1/2.(AB+CD)=> MN= 1/2.(4+10)==7 (cm)
xét tg ABC có: N là t/đ của Bc(gt) ; NF//AB( vì F thuộc MN ; MN//AB) => F là t/đ của AC=> NF la đg trung bình của tg ABC
=> NF=1/2.AB=1/2.4=2(cm)
c/m tương tự ta đc: ME=2cm
ta có: MN=ME+EF+FN ( vì E,F thuộc MN)
=> 7 =2+EF+2 => EF=3 (cm)
Vậy độ dài cạnh EF là 3cm