Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Xét một trường hợp đặc biệt của các điểm M, E, F ta tính được T = 1.
Đáp án là C
V S . A ' B ' C ' V S . A B C = 1 27 ⇒ V S . A ' B ' C ' = 1 27 V S . A B C ⇒ V S . A B C D = 2 V S . A ' B ' C ' = 2 27 . 1 2 V S . A B C D = V 27 .
Gọi H là trung điểm của AC
Đỉnh S cách đều các điểm A, B, C
Xác đinh được
Ta có MH//SA
Gọi I là trung điểm của AB
và chứng minh được
Trong tam giác vuông SHI tính được
Chọn A.
Đáp án D
Tồn tại 5 mặt phẳng thỏa mãn đề bài là:
- Mp đi qua trung điểm AD,BC,SC,SD
- Mp đi qua trung điểm CD,AB,SC,SB
- Mp đi qua trung điểm AD,BC,SB,SA
- Mp đi qua trung điểm CD,AB,SA,SD
- Mp đi qua trung điểm SA,SB,SC,SD
Đáp án B
Phương pháp:
Gọi các trung điểm của các cạnh bên và các cạnh đáy.
Tìm các mặt phẳng cách đều 5 điểm S, A, B, C, D.
Cách giải:
Gọi E; F; G; H lần lượt là trung điểm của SA, SB, SC, SD và M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA .
Ta có thể tìm được các mặt phẳng cách đều 5 điểm S, A, B, C, D là (EFGH); (EFNQ); (GHQN); (FGPM); (EHPM)
Đáp án là C