Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi M là trung điểm BC; Gọi d là khoảng cách từ A tới (SBC)
Ta có:
Đáp án D
Gọi H, I , theo thứ tự là trung điểm AD,BC
G là tâm đường tròn nội tiếp tam giác đều
SAD nên G cũng là trọng tâm tam giác SAD.
Đáp án B.
Vẽ đường thẳng d qua B và song song với AC.
Gọi K, I lần lượt là hình chiếu của H trên d và SB, L là hình chiếu của H trên SK.
Tam giác SBC cân hay đều em nhỉ?
Vì tam giác SBC đều thì sẽ không khớp với dữ kiện \(V_{SABC}=\dfrac{a^3}{16}\)
a) Vì ABCD là nửa lục giác đều nội tiếp trong đường tròn đường kính AD = 2a nên ta có: AD //BC và AB = BC = CD = a, đồng thời AC ⊥ CD, AB ⊥ BD, AC = BD = a√3.
Như vậy
Trong mặt phẳng (SAC) dựng AH ⊥ SC tại H ta có AH ⊥ CD và AH ⊥ SC nên AH ⊥ (SCD)
Vậy AH = d(A,(SCD))
Xét tam giác SAC vuông tại A có AH là đường cao, ta có:
Vậy A H 2 = 2 a 2 ⇒ A H = a 2
Gọi I là trung điểm của AD ta có BI // CD nên BI song song với mặt phẳng (SCD). Từ đó suy ra d(B, (SCD)) = d(I,(SCD)).
Mặt khác AI cắt (SCD) tại D nên
Do đó:
b) Vì AD // BC nên AD // (SBC), do đó d(AD, (SBC)) = d(A,(SBC))
Dựng AD ⊥ BC tại E ⇒ BC ⊥ (SAE)
Dựng AD ⊥ SE tại F ta có:
Vậy AF = d(A,(SBC)) = d(AD, (SBC))
Xét tam giác vuông AEB ta có:
Xét tam giác SAE vuông tại A ta có:
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\) (do chóp đều)
\(\Rightarrow SO\perp BC\)
Đường thẳng AO cắt (SBC) tại C, mà \(AC=2OC\Rightarrow d\left(A;\left(SBC\right)\right)=2d\left(O;\left(SBC\right)\right)\)
Gọi M là trung điểm BC \(\Rightarrow OM\) là đường trung bình tam giác ABC
\(\Rightarrow OM//AB\Rightarrow OM\perp BC\)
\(\Rightarrow BC\perp\left(SOM\right)\)
Trong tam giác vuông SOM, từ O kẻ \(OH\perp SM\Rightarrow BC\perp OH\)
\(\Rightarrow OH\perp\left(SBC\right)\Rightarrow OH=d\left(O;\left(SBC\right)\right)\)
\(OM=\frac{1}{2}AB=\frac{a}{2}\) ; \(OB=\frac{1}{2}BD=\frac{AB\sqrt{2}}{2}=\frac{a\sqrt{2}}{2}\)
\(SO=\sqrt{SB^2-OB^2}=\frac{a}{2}\)
\(\frac{1}{OH^2}=\frac{1}{SO^2}+\frac{1}{OM^2}\Rightarrow OH=\frac{SO.OM}{\sqrt{SO^2+OM^2}}=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow d\left(A;\left(SBC\right)\right)=2OH=\frac{a\sqrt{2}}{2}\)