K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2021

a. \(OC=\dfrac{2}{3}.2a.\dfrac{\sqrt{3}}{2}=\dfrac{2a\sqrt{3}}{3}\)

\(\Rightarrow tan\widehat{SCO}=\dfrac{SO}{OC}=\dfrac{3\sqrt{3}}{2}\) \(\Rightarrow\widehat{SCO}\simeq69^0\)

b. Gọi M là trung điểm BC \(\Rightarrow BC\perp\left(SAM\right)\)

Trong mp (SAM), từ A kẻ  \(AH\perp SM\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow\widehat{ASM}\) là góc giữa SA và (SBC)

\(SA=\sqrt{SO^2+OC^2}=\dfrac{a\sqrt{93}}{3}\)

\(SM=\sqrt{SA^2-\left(\dfrac{BC}{2}\right)^2}=\dfrac{2a\sqrt{21}}{3}\)

\(AM=a\sqrt{3}\)

Áp dụng định lý hàm cos:

\(cos\widehat{ASM}=\dfrac{SA^2+SM^2-AM^2}{2SA.MM}=...\)

14 tháng 11 2017

4 tháng 7 2017

+ Gọi H là trung điểm của BC

Do tam giác ABC cân tại A nên AH ⊥ BC, tam giác SBC đều nên SH  ⊥ BC

Mà (SBC)  ⊥ (ABC)

Do đó SH  ⊥ (ABC)

+ Gọi K là hình chiếu vuông góc của H lên SA ⇒  HK ⊥ SA

Ta có  B C ⊥ S H B C ⊥ A H ⇒ B C ⊥ S A H ⇒ B C ⊥ H K

Vậy HK là đoạn vuông góc chung của BC và SA, do đó khoảng cách giữa BC và SA là HK.

+ Tính HK

Tam giác SBC đều cạnh a ⇒  SH =  a 3 2

Tam giác ABC vuông cân tại A ⇒  AH =  B C 2 = a 2

Tam giác SHA vuông tại H có HK là đường cao ⇒ 1 H K 2 = 1 S H 2 + 1 A H 2  

HK =  a 3 4

Vậy d(SA; BC) = a 3 4 .

Đáp án C

21 tháng 10 2018

21 tháng 9 2018

Chọn D.

Gọi M là trung điểm của BC, suy ra AM ⊥ BC.

Ta có 

Do đó 

Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2

Tam giác vuông SAM, có 

11 tháng 12 2018

28 tháng 6 2018

Đáp án A

4 tháng 10 2019

Chọn A

Gọi M là trung điểm BC

Gọi K là hình chiếu của A trên SM , suy ra AK ⊥ SM.   (1)