K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

Gọi \(I\) là trung điểm của \(BC\), kẻ \(OH \bot SI\left( {H \in SI} \right)\).

\(ABC\) là tam giác đều \( \Rightarrow AI \bot BC\)

\(SO \bot \left( {ABC} \right) \Rightarrow SO \bot BC\)

\( \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot OH\)

Mà \(OH \bot SI\)

\( \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH\)

\(ABC\) là tam giác đều \( \Rightarrow AI = \frac{{AB\sqrt 3 }}{2} = a\sqrt 3  \Rightarrow OI = \frac{1}{3}AI = \frac{{a\sqrt 3 }}{3}\)

\(SO = a\sqrt 2  \Rightarrow OH = \frac{{SO.OI}}{{\sqrt {S{O^2} + O{I^2}} }} = \frac{{a\sqrt {14} }}{7}\)

Chọn A.

26 tháng 10 2017

Chọn C.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Gọi O là trọng tâm của tam giác ABC và M là trung điểm của BC.

- Vì hình chóp S.ABC là hình chóp tam giác đều nên: S) ⊥ (ABC); SO = a√3.

- Kẻ OH ⊥ SM, ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2) nên suy ra d(O; (SBC)) = OH.

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Xét tam giác vuông SOM, đường cao OH có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

23 tháng 3 2018

Đáp án C

21 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a

Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên Giải sách bài tập Toán 11 | Giải sbt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

NV
23 tháng 1 2021

Tam giác SBC cân hay đều em nhỉ?

Vì tam giác SBC đều thì sẽ không khớp với dữ kiện \(V_{SABC}=\dfrac{a^3}{16}\)

23 tháng 1 2021

Đề cho là tam giác đều ạ

25 tháng 1 2021

Ta tính được \(AG=a\dfrac{\sqrt{3}}{3}\)

Từ gt ta có:

\(\widehat{\left(SA,\left(ABC\right)\right)}=\widehat{\left(SA,AG\right)}=\widehat{SAG}=60^0\)(Vì S.ABC là chóp tam giác đều nên \(SG\perp\left(ABC\right)\))

Khi đó SG=AG.tan60=a

Gọi M là trung điểm BC \(\Rightarrow GM=a\dfrac{\sqrt{3}}{6}\)

Đặt d(G,(SBC))=x

Áp dụng mô hình "điểm tốt - vẽ hai bước" cho hình chóp S.GBC với G là "điểm tốt" ta có:

\(\dfrac{1}{x^2}=\dfrac{1}{SG^2}+\dfrac{1}{GM^2}=\dfrac{1}{a^2}+\dfrac{1}{\left(a\dfrac{\sqrt{3}}{6}\right)^2}\)

\(\Rightarrow x=\dfrac{a}{\sqrt{13}}\)

25 tháng 1 2021

Mô hình "điểm tốt - vẽ hai bước": Cho hình chóp S.ABC với \(SA\perp\left(ABC\right)\). Kẻ \(AH\perp BC,AK\perp SH\) thì d(A,(SBC))=AK.

CM: Ta có: \(SA\perp\left(ABC\right)\Rightarrow SA\perp AH\)

Mà \(AH\perp BC\Rightarrow BC\perp\left(SAH\right)\)

\(\Rightarrow\left(SBC\right)\perp\left(SAH\right)\) theo giao tuyến SH

Mà \(AK\perp SH,AK\subset\left(SAH\right)\) \(\Rightarrow AK\perp\left(SBC\right)\), dễ dàng suy ra đpcm

 

 

30 tháng 8 2017