Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mặt phẳng (ABCD) ta có AC cắt BD tại O, IJ cắt BD tại E. trong mặt phẳng (SBD), ME cắt SO tại G. Ta có G thuộc (MIJ). (MIJ) chứa IJ // AC nên giao tuyến của (MIJ) với (SAC) là đường thẳng qua G và song song với AC.
Đáp án D
Chọn A.
- Xét 2mp (SAD) và (SBC) có: Điểm S chung:
(Theo hệ quả của định lý 2 (Giao tuyến của ba mặt phẳng)).
Chọn C.
- Ta có: SA = SC nên SAC là tam giác cân tại S.
- Mặt khác: đáy ABCD là hình thoi có O là giao điểm hai đường chéo nên O là trung điểm của AC .
- Khi đó ta có: AC ⊥ SO.
B là khẳng định sai
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
\(CD=\left(SCD\right)\cap\left(BCD\right)\)
\(\Rightarrow\widehat{SDA}\) là góc giữa (SDC) và (BCD)
\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{2}\Rightarrow\widehat{SDA}\approx54^044'\)