K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: CD\(\perp\)AD(ABCD là hình vuông)
CD\(\perp\)SA(SA\(\perp\)(ABCD))

AD,SA cùng thuộc mp(SAD)

Do đó: CD\(\perp\)(SAD)

b: Ta có: BC\(\perp\)AB(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

AB,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

c: AB\(\perp\)AD(ABCD là hình vuông)

AB\(\perp\)SA(SA\(\perp\)(ABCD))

AD,SA cùng thuộc mp(SAD)

Do đó: AB\(\perp\)(SAD)

d: AD\(\perp\)AB

AD\(\perp\)SA(SA\(\perp\)(ABCD)))

SA,AB cùng thuộc  mp(SAB)

Do đó: AD\(\perp\)(SAB)

e: BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

3: BC vuông góc SAB

=>AE vuông góc BC

mà AE vuông góc SB

nên AE vuông góc (SBC)

=>AE vuông góc SC

4: (SB;(SAC))=(SB;SD)=góc DSB

\(SD=\sqrt{SA^2+AD^2}=2a;SB=2a;DB=a\sqrt{2}\)

\(cosDSB=\dfrac{4a^2+4a^2-2a^2}{2\cdot2a\cdot2a}=\dfrac{3}{4}\)

=>góc DSB=41 độ

 

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

 

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

3 tháng 2 2023

loading...  

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a, Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)

\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)

b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)

\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)

\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)

c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)

Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)

\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)

Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)

\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)

b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)

\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)

\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)

c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)

Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)

\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)

5 tháng 5 2022

Tham khảo nhé!

https://hoc24.vn/cau-hoi/cho-hinh-chop-sabc-co-tam-giac-abc-vuong-tai-a-goc-abc60-sbaba-hai-mat-ben-sab-va-sbc-cung-vuong-goc-voi-mat-day-goi-hk-lan-luot-la.898787451803