Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ABCD là hình chữ nhật
=>AD//BC
b: SB cắt SC tại S
=>SB và SC là hai đường thẳng cắt nhau
c: SA cắt SD tại S
=>SA và SD là hai đường thẳng cắt nhau
d: \(SB\subset\left(SBC\right)\)
\(CD\subset\left(SCD\right)\)
Do đó: SB và CD là hai đường thẳng chéo nhau
e: \(SC\subset\left(SBC\right)\)
\(AD\subset\left(SAD\right)\)
Do đó: SC và AD là hai đường thẳng chéo nhau
a: Xét ΔSBD có
H,K lần lượt là trung điểm của SB,SD
=>HK là đường trung bình của ΔSBD
=>HK//BD
mà \(BD\subset\left(ABCD\right)\);HK không thuộc (ABCD)
nên HK//(ABCD)
b: Chọn mp(SBD) có chứa BK
\(O\in BD\subset\left(SBD\right);O\in AC\subset\left(SAC\right)\)
=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
Gọi E là giao điểm của SO với BK
=>E là giao điểm của BK với mp(SAC)
=>BK cắt (SAC) tại E
c: \(O\in BD\subset\left(SBD\right);S\in\left(SBD\right)\)
Do đó: \(SO\subset\left(SBD\right)\)
Đáp án D
Gọi M là điểm bất kì trên cạnh SA
Trong (SAB), kẻ Mx // SB, Mx cắt AB tại N
Trong (ABCD), kẻ Ny // AC, Ny cắt BC tại E
Ny cắt BD tại J
Trong (SBC), kẻ Ez // SB, Ez cắt SC tại F
Trong (SBD), kẻ Jt // SB, Jt cắt SD tại I
⇒ IJ // (SAB)
Ta có: \(I\) là trung điểm của \(SA\)
\(J\) là trung điểm của \(SB\)
\( \Rightarrow IJ\) là đường trung bình của tam giác \(SAB\)
\( \Rightarrow IJ\parallel AB\)
\(E\) là trung điểm của \(SC\)
\(F\) là trung điểm của \(SD\)
\( \Rightarrow EF\) là đường trung bình của tam giác \(SC{\rm{D}}\)
\( \Rightarrow EF\parallel C{\rm{D}}\)
Mà \(AB\parallel C{\rm{D}}\).
Vậy \(IJ\parallel EF\parallel AB\parallel C{\rm{D}}\).
Vậy \(AD\) không song song với \(IJ\)
Chọn C.
a: ABCD là hình bình hành
=>AB//CD
b: SA cắt SC tại S
=>SA và SC là hai đường thẳng cắt nhau
c: SB cắt SD tại S
=>SB và SD là hai đường thẳng cắt nhau
d: \(SA\subset\left(SAB\right)\)
\(BC\subset\left(SBC\right)\)
Do đó: SA và BC là hai đường thẳng chéo nhau
d: \(SD\subset\left(SCD\right)\)
\(AB\subset\left(ABCD\right)\)
Do đó: SD và AB là hai đường thẳng chéo nhau