Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I, J lần lượt là trung điểm của BC, CD.
Ta có I J / / G 1 G 2 nên giao tuyến của hai mặt phẳng ( A G 1 G 2 ) và (ABCD) là đường thẳng d qua A và song song với IJ
Gọi O = IJ ∩ AC, K = G 1 G 2 ∩ S O , L = AK ∩ SC
L G 2 cắt SD tại R
L G 2 cắt SB tại Q
Ta có thiết diện là tứ giác AQLR.
Xét tam giác SAB ta có: MN là đường trung bình suy ra MN // AB.
Tương tự ta có: NP // BC, PQ // CD, MQ // AD.
Mà ABCD là hình bình hành nên AB // CD, AD// CD, suy ra MN // PQ, MQ // NP.
Như vậy, MNPQ là hình bình hành.
Theo câu 27, ta có MN // AB // IJ và thiết diện của mặt phẳng (GIJ) với hình chóp là tứ giác MNJI.
Ta có MN đi qua trọng tâm G cảu tam giác SAB và song song với AB nên M N A B = 2 3 = > M N = 2 3 A B
IJ là đường trung bình của hình thangABCD nên: IJ = 1 2 ( A B + C D )
Do IJ // MN nên thiết diện là hình bình hành khi và chỉ khi IJ = MN
= > 2 3 A B = 1 2 ( A B + C D )
⇒AB = 3CD
Đáp án B
a) Xét tam giác HAC ta có: GH = 2GA, HK = 2KC suy ra GK // AC hay GK // (ABCD).
b) (MNEF) // (ABCD) do đó MN // AB, NE // BC, EF // CD, MF // AD
Lại có AB // CD, AD // BC suy ra MN // EF, MF // NE.
Suy ra, tứ giác MNEF là hình bình hành.
Nếu H thuộc cạnh OC, O là giao điểm của AC và BD thì thiết diện là ngũ giác KEMNF, trong đó E, F lần lượt là giao điểm của đường thẳng đi qua I, song song với BD với SD, và SB, I là giao điểm của KH với SO
Nếu H thuộc đoạn OA thì thiết diện là tam giác KMN, với M, N lần lượt là giao điểm của đường thẳng đi qua H, song song BD với AD và AB.
Đáp án A
Đáp án B