K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 9 2021

\(V_{SBCD}=\dfrac{1}{2}V_{SABCD}=\dfrac{1}{6}.SA.AB.AD=\dfrac{a^3\sqrt{3}}{3}\)

13 tháng 4 2019

7 tháng 12 2018

Đáp án B

 

1 tháng 1 2017

Do \(\left(SC;\left(ABCD\right)\right)=45^0;SA\perp\left(ABCD\right)\)

nên \(\left\{{}\begin{matrix}\left(SC;AC\right)=45^0\\AS\perp AC\end{matrix}\right.\)\(\Rightarrow AS=AC=\sqrt{AB^2+BC^2}=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow V_{S.ABCD}=\dfrac{1}{6}.\left(AD+BC\right).AB.AS\)

\(=\dfrac{1}{6}\left(2a+a\right).a.a\sqrt{2}=\dfrac{\sqrt{2}}{2}a^3\)

14 tháng 1 2017

21 tháng 4 2018

Chọn A

=> SB là hình chiếu của SC lên mặt phẳng (SAB).

.

Xét tam giác SBC vuông tại B có

Xét tam giác SAB vuông tại A có:

31 tháng 1 2018

Đáp án B.

Hướng dẫn giải:Ta có

Suy ra tam giác SAD vuông cân tại A nên SA = AD =2a .

Trong hình thang ABCD , kẻ B H ⊥ A D ( H ∈ A D ) .

Do ABCD là hình thang cân nên A H = A D - B C 2 = a 2 .

Tam giác AHB ,có  B H = A B 2 - A H 2 = a 3 2

Diện tích S A B C D = 1 2 ( A D + B C ) . B H = 3 a 3 2 4  .

Vậy   V S . A B C D = 1 3 S A B C D . S A = a 3 3 2