K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 12 2017

Lời giải:

Kẻ $AT$ vuông góc $MC$ \((T\in MC)\)

\(MC=\sqrt{MB^2+BC^2}=\sqrt{(\frac{a}{2})^2+a^2}=\frac{\sqrt{5}a}{2}\)

Khi đó:

\(\frac{AT}{AM}=\sin \angle AMT=\sin \angle BMC=\frac{BC}{MC}=\frac{a}{\frac{\sqrt{5}a}{2}}=\frac{2\sqrt{5}}{5}\)

\(\Leftrightarrow AT=\frac{2\sqrt{5}}{5}.AM=\frac{\sqrt{5}a}{5}\)

Xét tam giác vuông tại $A$ là $SAT$ :

\(ST=\sqrt{SA^2+AT^2}=\sqrt{a^2+\frac{a^2}{5}}=\frac{\sqrt{30}a}{5}\)

Ta thấy:

\(\left\{\begin{matrix} AT\perp MC\\ SA\perp MC\end{matrix}\right.\Rightarrow ST\perp MC\)

\(\Rightarrow d(S, MC)=ST=\frac{\sqrt{30}a}{5}\)

Vì $I$ là trung điểm của $SC$ nên:

\(d(I,MC)=\frac{1}{2}d(S,MC)=\frac{\sqrt{30}a}{10}\)

Đáp án A.

NV
20 tháng 1 2022

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(AC=a\sqrt{2}\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{\sqrt{3}}{3}\)

\(\Rightarrow\widehat{SCA}=30^0\)

16 tháng 2 2018

Đáp án A

19 tháng 9 2019

Chọn A.

Do IO là đường trung bình của tam giác SAC nên:

* OM là đường trung bình tam giác ACD nên:

Tính thể tích của khối chóp I.OBM:

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.