K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

19 tháng 4 2017

Đáp án A

6 tháng 5 2017

Đáp án A

29 tháng 4 2019

Đáp án D

Ta có:

S A B C D = a 2

S A 2 = S B 2 - A B 2 = 3 a 2 - a 2 = 2 a 2 ⇒ S A = a 2

Do đó

V S . A B C D = 1 3 . S A . S A B C D = 1 3 a 2 . a 2 = a 3 2 3

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
5 tháng 10 2019

4 tháng 9 2018

Phương pháp

+ Xác định góc giữa đường thẳng d và mặt phẳng (P) là góc giữa đường thẳng d  và đường thẳng d' với d' là hình chiếu của d  trên mặt phẳng (P).

 

+ Thể tích hình chóp có chiều cao h và diện tích đáy S là V = 1 3 h S

Cách giải:

+ Ta có SA  (ABCD) => AB là hình chiếu của

SB lên mặt phẳng (ABCD) . Suy ra góc giữa SB và đáy là góc ∠  SBA = 600.

+ Xét tam giác vuông SAB có: 

 

+ Diện tích đáy

 

+ Thể tích khối chóp là

Chọn C. 

2 tháng 2 2017

Đáp án C

Gọi M, N lần lượt là trung điểm của AB và CD

Tam giác SAB cân tại S suy ra S M ⊥ A B  

⇒ S M ⊥ d , với d = ( S A B ) ∩ ( S C D )  

Vì ( S A B ) ⊥ ( S C D ) suy ra S M ⊥ ( S C D )

Kẻ S H ⊥ M N ⇒ S H ⊥ ( A B C D )  

Ta có S ∆ S A B + S ∆ S C D = 7 a 2 10  

 

⇒ S M + S N = 7 a 5

Tam giác SMN vuông tại S nên S M 2 + S N 2 = M N 2 = a 2  

Giải hệ  S M + S N = 7 a 5 S M 2 + S N 2 = a 2

Vậy thể tích khối chóp  V S . A B C D = 1 3 . S A B C D . S H = 4 a 3 25

23 tháng 11 2019