K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Đáp án A

Hướng dẫn giải: Ta có:

 

Có A H 2 + S A 2 = 5 a 2 4 = S H 2 ⇒ ∆ S A H  vuông tại A

Do đó mà S A ⊥ ( A B C D )  nên

 

  (Mặt phẳng (SAB) vuông góc với đáy (ABCD)) 

Trong tam giác vuông SAC, có

8 tháng 10 2017

Chọn A.

Gắn hệ trục tọa độ như hình vẽ. Khi đó ta có:

A(0;0;0), B(0;a;0), C(a;a;0), D(a;0;0), S(0;0;a)

là trung điểm của BC  ⇒ M a 2 ; a ; 0

N là trung điểm của SD ⇒ N a 2 ; 0 ; a 2 ⇒ M N → 0 ; - a ; a 2

Do ABCD là hình vuông nên  AC ⊥ BD

S A ⊥ ( A B C D ) B D ⊂ ( A B C D ) ⇒ S A ⊥ B D

Ta có: 

là một pháp tuyến của (SAC)

Khi đó ta có: 

sin α = cos ( M N → , B D → ) = M N → . B D → M N → . B D →

= a 2 a 5 2 . a 2 = 10 5

1 sin 2 α   = 1 + c o t 2 α   ⇔ 25 10 = 1 + c o t 2 α   ⇔ c o t 2 α   = 3 2 ⇒ c o t α = 3 2 ( d o   0 < α < 90 0 )

Lại có: 

tan α . c o t α = 1   ⇒ tan α = 2 3 = 6 3

23 tháng 3 2019

Chọn A.

Gắn hệ trục tọa độ như hình vẽ. Khi đó ta có:

A(0;0;0), B(0;a;0), C(a;a;0), D(a;0;0), S(0;0;a)

là trung điểm của BC  ⇒ M a 2 ; a ; 0

là trung điểm của SD  ⇒ N a 2 ; 0 ; a 2 ⇒ M N → 0 ; - a ; a 2

Do ABCD là hình vuông nên  AC ⊥ BD

S A ⊥ ( A B C D ) B D ⊂ ( A B C D ) ⇒ S A ⊥ B D

Ta có: 

là một pháp tuyến của (SAC)

Khi đó ta có: 

sin α = cos ( M N → , B D → ) = M N → . B D → M N → . B D →

= a 2 a 5 2 . a 2 = 10 5

1 sin 2 α   = 1 + c o t 2 α   ⇔ 25 10 = 1 + c o t 2 α   ⇔ c o t 2 α   = 3 2 ⇒ c o t α = 3 2 ( d o   0 < α < 90 0 )

Lại có: 

tan α . c o t α = 1   ⇒ tan α = 2 3 = 6 3

22 tháng 2 2021

bctfhn ynz httrtn 

7 tháng 2 2019

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
5 tháng 5 2017

Đáp án A

22 tháng 7 2018

31 tháng 8 2018

26 tháng 11 2018

Hình vuông ABCD có độ dài đường chéo bằng a√2 suy ra hình vuông đó có cạnh bằng a.

Chọn hệ trục tọa độ Oxyz như hình vẽ. Ta có A (0;0;0), B (a;0;0), C (a;a;0), S (0;0;a).