K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Chọn D

Để thuận tiện trong việc tính toán ta chọn a = 1.

Trong không gian, gắn hệ trục tọa độ Oxyz như hình vẽ sao cho gốc O trùng với điểm A, tia Ox chứa đoạn thẳng AB, tia Oy chứa đoạn thẳng AD, tia Oz chứa đoạn thẳng AS. Khi đó: A(0;0;0), B(1;0;0), C(1;1;0), S(0;0;2), D(0;1;0)

Vì M  là trung điểm SD  nên tọa độ là  M 0 ; 1 2 ; 1

Ta có

Gọi  α là góc giữa hai mặt phẳng (AMC) và (SBC).

Suy ra

Mặt khác

20 tháng 1 2018

31 tháng 12 2017

Chọn B.

Góc tạo bởi hai mặt phẳng (SBC) và (ABCD)   S B A ^ = 60 o

Ta có: Diện tích đáy:   S A B C D = a 2

Tam giác SAB vuông tại

S A = A B . tan S B A ^ = a . tan 60 o = a 3

Thể tích khối chóp S.ABCD 

V = 1 3 . S A B C D . S A = 1 3 a 2 . a 3 = a 3 3 3

15 tháng 2 2018

Chọn C

26 tháng 2 2018

Đáp án A

Gắn trục tọa độ Axyz với A là gốc tọa độ sao cho:

Tia Ax trùng tia AB; tia Ay trùng tia AD; tia Az trùng tia AS.

Khi đó:

 

Gọi O là tâm hình vuông ABCD.

Do góc giữa mặt phẳng(SBD)và (ABCD) bằng 60 o nên  S O A ⏞ = 60 o

⇒ S 0 ; 0 ; a 6 2

 Mặt phẳng (P) chứa SC và song song với BM có vecto pháp tuyến là ( 6 ; 2 6 ; 6 ) / / 1 ; 2 ; 6  nên có phương trình:

x + 2 y + 6 z - 3 a = 0

 Do đó: d ( S C , B M ) = d ( B ; ( P ) ) = 2 a 11 (đvđd).

20 tháng 10 2019

8 tháng 10 2019

Đáp án D

3 tháng 2 2018

1 tháng 10 2018

NV
3 tháng 5 2021

Dễ dàng chứng minh \(BC\perp BD\) (Pitago đảo) \(\Rightarrow BC\perp\left(SBD\right)\)

Đồng thời dễ dàng chứng minh \(AB\perp\left(SAD\right)\)

Từ D kẻ \(DH\perp SA\Rightarrow DH\perp\left(SAB\right)\)

Từ D kẻ \(DK\perp SB\Rightarrow DK\perp\left(SBC\right)\)

\(\Rightarrow\widehat{HDK}\) là góc giữa (SAB) và (SBC)

\(\Rightarrow\widehat{HDK}=30^0\Rightarrow DH=DK.cos30^0=\dfrac{DK\sqrt{3}}{2}\Rightarrow DH^2=\dfrac{3DK^2}{4}\)

Hệ thức lượng: \(\dfrac{1}{DH^2}=\dfrac{1}{SD^2}+\dfrac{1}{AD^2}\Leftrightarrow\dfrac{4}{3DK^2}=\dfrac{1}{SD^2}+\dfrac{1}{a^2}\Rightarrow\dfrac{1}{DK^2}=\dfrac{3}{4SD^2}+\dfrac{3}{4a^2}\) (1)

\(\dfrac{1}{DK^2}=\dfrac{1}{SD^2}+\dfrac{1}{BD^2}=\dfrac{1}{SD^2}+\dfrac{1}{2a^2}\) (2)

(1);(2) \(\Rightarrow\dfrac{3}{4SD^2}+\dfrac{3}{4a^2}=\dfrac{1}{SD^2}+\dfrac{1}{2a^2}\Rightarrow SD=a\)

\(V=\dfrac{1}{3}SD.\dfrac{1}{2}AD\left(AB+CD\right)=...\)

3 tháng 5 2021

Em cảm ơn thầy rất nhiều ạ ^^