Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Ta có SAD là tam giác đều nên S H ⊥ A D
Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .
Dựng B E ⊥ H C ,
do B E ⊥ S H ⇒ B E ⊥ S H C
Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a
Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .
Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2
suy ra V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H
= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .
Đáp án C
Tam giác SAD đều cạnh 2 a ⇒ S H = a 3 ⇒ H C − 2 a 3 .
Kẻ BK vuông góc H C ⇒ B K ⊥ S H C ⇒ B K − 2 a 6
Diện tích tam giác BHC là S Δ B H C = 1 2 B K . H C = 6 a 2 2
Mà S A B C D = S Δ H A B + S Δ H C D + S Δ H B C = 1 2 S A B C D + S Δ H B C ⇒ S A B C D = 2 x S Δ H B C = 12 a 2 2
V S . A B C D = 1 3 . S H . S Δ H B C = 1 3 . a 3 .12 a 2 2 = 4 6 a 3
Đáp án D
Phương pháp: Đưa khoảng cách từ M đến (SAC) về khoảng cách từ H đến (SAC).
Cách giải: Gọi H là trung điểm của AB ta có SH ⊥ (ABCD)
Ta có (SC;(ABCD)) = (SC;HC) = Góc SCH = 45 0
=>∆SHC vuông cân tại H =>
Trong (ABD) kẻ HI ⊥ AC,trong (SHI) kẻ HK ⊥ SI ta có:
Ta có ∆AHI: ∆A CB(g.g) =>
Đáp án B
Dễ thấy: S C H ^ = 45 ∘ Gọi H là trung điểm của AB ta có S H ⊥ A B ⇒ S H ⊥ A B C D .
Ta có: S H = H C = a 17 2 .
Ta có: d = d M , S A C = 1 2 d D , S A C
Mà 1 2 d D , S A C = 1 2 d B , S A C nên d = d H , S A C
Kẻ H I ⊥ A C , H K ⊥ S I ⇒ d H , S A C = H K
Ta có: H I = A B . A D 2 A C = a 5 5
Từ đó suy ra: d = H K = S H . H I S I = a 1513 89 .
Đáp án A
Phương pháp: Xác định góc giữa hai mặt phẳng bằng cách xác định góc giữa hai đường thẳng lần lượt vuông góc với giao tuyến.
Cách giải:
Kẻ IH ⊥ CD ta có:
Ta có:
Gọi E là trung điểm của AB => EC = AD = 2a
Đáp án D
Đặt A D = x x > 0 . Gọi J là trung điểm BD ta có IS ⊥ I D ; I S ⊥ I J ; I D ⊥ I J .
Tứ diện SIJD vuông tại I. Gọi h là khoảng cách từ I đến mặt phẳng S B D ta có.
1 = 1 h 2 = 1 S I 2 + 1 I D 2 + 1 I J 2 = 1 x 3 2 2 + 1 x 2 2 + 1 x 2 2 + 1 x ⇒ h = 57 19 x .
Từ giả thiết ⇒ x = 57 3 c m
Vậy S A B C D = 1 2 A B + D C . A D = 19 2