K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

14 tháng 10 2017

27 tháng 6 2018

14 tháng 1 2019

ĐÁP ÁN: A

22 tháng 2 2021

Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)

Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)

Vậy d(A,(SCD))=AH

Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)

Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)

E=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.

d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h 

Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2⇒h=a6611 

Vậy d(M,(NCD))=a6644. 

31 tháng 3 2017

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

10 tháng 9 2017

16 tháng 8 2023

Xét mặt phẳng đáy (ABCD) là hình thang cân. Kéo dài AC cắt BD tại I ta thu được tam giác đều ICD. 

Do đó AD và BC đồng thời là đường cao và là đường trung tuyến của tam giác ICD. Suy ra O là trọng tâm của tam giác ICD (Với O là giao của AD và BC)

Ta có: \(AD=\sqrt{CD^2-AC^2}=a\sqrt{3}\)

\(\Rightarrow OA=\dfrac{1}{3}a\sqrt{3}\)

Vì hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) và có giao tuyến là SO. Do đó SO vuông góc với (ABCD)

Xét tam giác SOB vuông tại O ta có: 

\(SO=\sqrt{SA^2-OA^2}=\dfrac{\sqrt{15}}{3}a\)

Vậy khoảng cách từ S đến mặt phẳng (ABCD) là \(\dfrac{\sqrt{15}}{3}a\)

Ta có: \(S_{ABCD}=\dfrac{3}{4}.S_{ICD}=\dfrac{3}{4}.\dfrac{AD.CI}{2}=\dfrac{3}{8}.a\sqrt{3}.2a=\dfrac{3\sqrt{3}}{4}a^2\)

\(\Rightarrow V_{S.ABCD}=\dfrac{1}{3}.SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{\sqrt{15}}{3}a.\dfrac{3\sqrt{3}}{4}a^2=\dfrac{\sqrt{5}}{4}a^3\)