K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Ta có: 

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

7 tháng 11 2019

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm (SAD) ∩ (SBC)

Gọi E= AD ∩ BC. Ta có:

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Do đó E ∈ (SAD) ∩ (SBC).

mà S ∈ (SAD) ∩ (SBC).

⇒ SE = (SAD) ∩ (SBC)

b) Tìm SD ∩ (AMN)

+ Tìm giao tuyến của (SAD) và (AMN) :

Trong mp (SBE), gọi F = MN ∩ SE :

F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)

F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)

⇒ F ∈ (SAD) ∩ (AMN)

⇒ AF = (SAD) ∩ (AMN).

+ Trong mp (SAD), gọi AF ∩ SD = P

⇒ P = SD ∩ (AMN).

c) Tìm thiết diện với mp(AMN):

(AMN) ∩ (SAB) = AM;

(AMN) ∩ (SBC) = MN;

(AMN) ∩ (SCD) = NP

(AMN) ∩ (SAD) = PA.

⇒ Thiết diện cần tìm là tứ giác AMNP.

9 tháng 6 2019

Giải bài 3 trang 126 sgk Hình học 11 | Để học tốt Toán 11

a) Gọi N là giao điểm của EM và CD

Vì M là trung điểm của AB nên N là trung điểm của CD (do ABCD là hình thang)

⇒ EN đi qua G

⇒ S, E, M, G ∈ (α) = (SEM)

Gọi O là giao điểm của AC và BD

Ta có (α) ∩ (SAC) = SO

và (α) ∩ (SBD) = SO = d

b) Ta có: (SAD) ∩ (SBC) = SE

c) Gọi O' = AC' ∩ BD'

Ta có AC' ⊂ (SAC), BD' ⊂ (SBD)

⇒ O' ∈ SO = d = (SAC) ∩ (SBD)

31 tháng 3 2017

a) (SAD) ∩ (SBC) = SE

b) Trong (SBE): MN ∩ SE = F

Trong (SAE): AF ∩ SD = P là điểm cần tìm

c) Thiết diện là tứ giác AMNP

TenAnh1 A = (-0.14, -7.4) A = (-0.14, -7.4) A = (-0.14, -7.4) B = (14.46, -7.36) B = (14.46, -7.36) B = (14.46, -7.36) C = (-3.74, -5.6) C = (-3.74, -5.6) C = (-3.74, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) D = (11.62, -5.6)

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

mà \(S\in\left(SBD\right)\cap\left(SAC\right)\)

nên \(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: Gọi K là giao của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: \(\left(SAD\right)\cap\left(SBC\right)=xy\), xy đi qua S và xy//AD//BC

NV
21 tháng 12 2022

a.

Trong mp (ABCD), kéo dài AD và BC cắt nhau tại E

\(\left\{{}\begin{matrix}E\in AD\in\left(SAD\right)\\E\in BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow E\in\left(SAD\right)\cap\left(SBC\right)\)

\(\Rightarrow SE=\left(SAD\right)\cap\left(SBC\right)\)

b.

Gọi O là giao điểm AC và BD \(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

Trong mp (SBD), nối DM cắt SO tại I

\(\left\{{}\begin{matrix}I\in SO\in\left(SAC\right)\\I\in DM\end{matrix}\right.\)

\(\Rightarrow I=DM\cap\left(SAC\right)\)

c.

Gọi F là trung điểm SA \(\Rightarrow FM\) là đường trung bình tam giác SAB

\(\Rightarrow FM||AB\Rightarrow FM||CD\)

Mà \(M\in\left(MCD\right)\Rightarrow F\in\left(MCD\right)\)

\(\Rightarrow\) Tứ giác CDFM là thiết diện của (MCD) và chóp

NV
21 tháng 12 2022

loading...

a: \(E\in AC\subset\left(SAC\right)\)

\(E\in BD\subset\left(SBD\right)\)

Do đó: \(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD với BC

\(K\in AD\subset\left(SAD\right)\)

\(K\in BC\subset\left(SBC\right)\)

Do đó: \(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(SK=\left(SAD\right)\cap\left(SBC\right)\)

c: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy\), xy đi qua S và xy//AB//CD

a: \(E\in AC\subset\left(SAC\right);E\in BD\subset\left(SBD\right)\)

=>\(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD và BC

\(K\in AD\subset\left(SAD\right);K\in BC\subset\left(SBC\right)\)

=>\(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SK\)

c: Xét (SAB) và (SCD) có

AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy; xy đi qua S và xy//AB//CD

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) mp(MAB) và (SCD)có điểm M chung và chứa hai đường thẳng thẳng song song là AB và CD

Do đó giao tuyến của hai mặt phẳng (MAB) và (SCD) là đường thẳng a đi qua M và song song với CD, AB.

b, Do MN //CD và M là trung điểm của SD. 

Suy ra, MN là đường trung bình của tam giác SCD.