K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

24 tháng 12 2021

24 tháng 12 2021

29 tháng 12 2023

a: Chọn mp(SAB) có chứa MN

Ta có: \(AB\subset\left(SAB\right)\)

\(AB\subset\left(ABCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(ABCD\right)=AB\)

Gọi P là giao điểm của MN với AB

=>P là giao điểm của MN với mp(ABCD)

b: Ta có: SN+NB=SB

=>2NB+NB=SB

=>SB=3NB

=>\(\dfrac{SN}{SB}=\dfrac{2}{3}\)

Xét ΔSBA có P,M,N thẳng hàng

nên \(\dfrac{PB}{PA}\cdot\dfrac{MA}{MS}\cdot\dfrac{NS}{NB}=1\)

=>\(\dfrac{PB}{PA}\cdot1\cdot2=1\)

=>\(\dfrac{PB}{PA}=\dfrac{1}{2}\)

=>B là trung điểm của AP

Trong mp(ABCD), gọi O là giao điểm của AC và BD

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔAPC có

B,O lần lượt là trung điểm của AP,AC

=>BO là đường trung bình của ΔAPC

=>BO//PC

=>BD//PC

Ta có: PC//BD

BD\(\subset\)(SBD)

PC không nằm trong mp(SBD)

Do đó: PC//(SBD)

 

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

13 tháng 12 2021

13 tháng 12 2021

22 tháng 2 2019

Chọn đáp án A

9 tháng 6 2019

Giải bài 3 trang 126 sgk Hình học 11 | Để học tốt Toán 11

a) Gọi N là giao điểm của EM và CD

Vì M là trung điểm của AB nên N là trung điểm của CD (do ABCD là hình thang)

⇒ EN đi qua G

⇒ S, E, M, G ∈ (α) = (SEM)

Gọi O là giao điểm của AC và BD

Ta có (α) ∩ (SAC) = SO

và (α) ∩ (SBD) = SO = d

b) Ta có: (SAD) ∩ (SBC) = SE

c) Gọi O' = AC' ∩ BD'

Ta có AC' ⊂ (SAC), BD' ⊂ (SBD)

⇒ O' ∈ SO = d = (SAC) ∩ (SBD)

NV
19 tháng 4 2022

Nối DM và AB kéo dài cắt nhau tại E

Do BM song song và bằng 1 nửa AD \(\Rightarrow BM\) là đường trung bình tam giác ADE

\(\Rightarrow AE=2BE\Rightarrow d\left(B;\left(SMD\right)\right)=\dfrac{1}{2}d\left(A;\left(SMD\right)\right)\)

Lại có: \(\left\{{}\begin{matrix}BN\cap\left(SMD\right)=S\\NS=\dfrac{1}{3}BS\end{matrix}\right.\) \(\Rightarrow d\left(N;\left(SMD\right)\right)=\dfrac{1}{3}d\left(B;\left(SMD\right)\right)=\dfrac{1}{6}d\left(A;\left(SMD\right)\right)\)

Từ A kẻ AF vuông góc MD (F thuộc MD), từ A kẻ AH vuông góc SF (H thuộc SF)

\(\Rightarrow AH\perp\left(SMD\right)\Rightarrow AH=d\left(A:\left(SMD\right)\right)\)

Hệ thức lượng trong tam giác vuông ADE:

\(\Rightarrow AF=\dfrac{AD.AE}{DE}=\dfrac{AD.2AB}{\sqrt{AD^2+\left(2AB\right)^2}}=\dfrac{8a\sqrt{17}}{17}\)

\(SA=\sqrt{SD^2-AD^2}=a\sqrt{21}\)

Hệ thức lượng: \(AH=\dfrac{SA.AF}{\sqrt{SA^2+AF^2}}=...\)

\(\Rightarrow d\left(N;\left(SMD\right)\right)=\dfrac{1}{6}AF=...\)

NV
19 tháng 4 2022

undefined

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Gọi \(E\) là giao điểm của \(SO\) và \(MN\). Ta có:

\(\left. \begin{array}{l}E \in MN \subset \left( {MNP} \right)\\E \in S{\rm{O}}\end{array} \right\} \Rightarrow E = S{\rm{O}} \cap \left( {MNP} \right)\)

b) Gọi \(Q\) là giao điểm của \(SA\) và \(EP\). Ta có:

\(\left. \begin{array}{l}Q \in EP \subset \left( {MNP} \right)\\Q \in S{\rm{A}}\end{array} \right\} \Rightarrow Q = S{\rm{A}} \cap \left( {MNP} \right)\)

c) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}I \in QM \subset \left( {MNP} \right)\\I \in AB \subset \left( {ABC{\rm{D}}} \right)\end{array} \right\} \Rightarrow I \in \left( {MNP} \right) \cap \left( {ABCD} \right)\\\left. \begin{array}{l}J \in QP \subset \left( {MNP} \right)\\J \in AC \subset \left( {ABC{\rm{D}}} \right)\end{array} \right\} \Rightarrow J \in \left( {MNP} \right) \cap \left( {ABCD} \right)\\\left. \begin{array}{l}K \in QN \subset \left( {MNP} \right)\\K \in AD \subset \left( {ABC{\rm{D}}} \right)\end{array} \right\} \Rightarrow K \in \left( {MNP} \right) \cap \left( {ABCD} \right)\end{array}\)

Do đó, \(I,J,K\) cùng nằm trên giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\).

Vậy \(I,J,K\) thẳng hàng.