K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 11 2019

Ta có AB//CD \(\Rightarrow\) AB//(MNPQ)

SB//MN \(\Rightarrow\) SB//(MNPQ)

\(\Rightarrow\) (SAB)//(MNPQ)

\(\left\{{}\begin{matrix}SA=\left(SAD\right)\cap\left(SAB\right)\\PQ=\left(SAD\right)\cap\left(MNPQ\right)\end{matrix}\right.\) \(\Rightarrow\) SA//PQ

b/ Ta có \(K\in\left(SAD\right);K\in\left(SBC\right)\Rightarrow SK=\left(SAD\right)\cap\left(SBC\right)\)

\(\Rightarrow K\) thuộc giao tuyến (SAD) và (SBC)

Mà giao tuyến (SAD) và (SBC) là đường thẳng cố định qua S song song AD và BC \(\Rightarrow\) K thuộc 1 đường thẳng cố định

25 tháng 1 2018

Đáp án B

Ta có: MN // BS ⇒ C M C B = C N C S

MQ // CD // AB (do ABCD là hình bình hành nên AB //CD) ⇒ C M C B = D Q D A

NP // CD ⇒ C N C S = D P D S

Do đó: D P D S = D Q D A  PQ // SA (Định lý Ta - lét trong tam giác SAD)

Lại có MN // BS và SB ∩  SA = S

Do đó MN không thể song song với PQ

Xét tứ giác MNPQ có NP // MQ (//CD)

Do đó MNPQ là hình thang.

Vậy khẳng địn (1) và (3) đúng.

Đáp án B

12 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Vì M ∈ (SAB)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SAB) = MN

và MN // SA

Vì N ∈ (SBC)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SBC) = NP

và NP // BC (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (α) ∩ (SCD) = PQ

Q ∈ CD ⇒ Q ∈ (ABCD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (ABCD) = QM

và QM // BC (2)

Từ (1) và (2) suy ra tứ giác MNPQ là hình thang.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (SAB) ∩ (SCD) = Sx và Sx // AB // CD

MN ∩ PQ = I ⇒ Giải sách bài tập Toán 11 | Giải sbt Toán 11

MN ⊂ (SAB) ⇒ I ∈ (SAB), PQ ⊂ (SCD) ⇒ I ∈ (SCD)

⇒ I ∈ (SAB) ∩ (SCD) ⇒ I ∈ Sx

(SAB) và (SCD) cố định ⇒ Sx cố định ⇒ I thuộc Sx cố định.

4 tháng 12 2021

4 tháng 12 2021

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có: \(\left( {ABM} \right) \cap \;\left( {ABCD} \right) = AB,\;\left( {ABCD} \right) \cap \;\left( {SCD} \right) = CD,\;AB//CD\).

Suy ra giao tuyến của (ABM) và (SCD) là đường thẳng qua M song song với AB và CD.

Qua M kẻ MK song song với CD (K thuộc SD).

Vậy, K là giao điểm của (AMN) và SD.

Xét tam giác SCD ta có: MK //CD suy ra \(\frac{{SK}}{{SD}} = \frac{{SM}}{{SC}} = \frac{1}{3}\)

b) Xét tam giác SCD ta có: MK //CD suy ra \(\frac{{MK}}{{CD}} = \frac{{SM}}{{SC}} = \frac{1}{3}\)

Lại có \(\frac{{AN}}{{AB}} = \frac{1}{3}\), AB=CD suy ra AN = MK.

Xét tứ giác ANMK ta có: AN = MK, AN // MK suy ra ANMK là hình bình hành.

Do đó MN // AK hay MN // (SAD).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) △SAB có: M, N là trung điểm của SA, SB nên MN // AB 

Mà AB // CD

Suy ra MN // CD mà CD thuộc (SCD)

Do đó: MN // (SCD) 

b) Ta có: MN = \(\dfrac{1}{2}\) AB 

Mà CD = \(\dfrac{1}{2}\) AB 

Suy ra: MN = CD mà MN // CD 

Nên MNCD là hình bình hành. Do đó MD // CN 

Mà CN thuộc (SBC) 

Suy ra: DM // (SBC).

c) Gọi G là giao điểm của DM và AI; H là trung điểm của AB; O là giao điểm của AC và DH

Ta có: AHCD là hình bình hành vì AH // CD, AH = CD

Do đó: O là trung điểm của AC và DH

Ta chứng minh được G là trung điểm của DM

△DMH có: G, O là trung điểm của DM, DH

Suy ra: GO // MH

Mà MH // SB (M, H là trung điểm của SA, AB)

Do đó: GO // SB mà GO thuộc (AIC) nên SB // (AIC).