Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xác định góc \(\alpha\) giữa SC và mặt phẳng (SAB)
\(\left\{{}\begin{matrix}S\in\left(SAB\right)\\CB\perp\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow\left[\widehat{SC,\left(SAB\right)}\right]=\widehat{CSB}=\alpha\)
- Tính góc \(\alpha\) :
Trong tam giác vuông \(SBC\), ta có :
\(\tan\alpha=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{3}}\Rightarrow\alpha=30^0\)
Gọi H là hình chiếu của S lên (ABCD)
Do \(SA=SB=SD\Rightarrow HA=HB=HD\)
\(\Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác ABD
Mặt khác \(\widehat{A}=60^0\Rightarrow\Delta ABD\) đều \(\Rightarrow H\in AC\)
\(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\\SH\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow\left(SAC\right)\perp\left(ABCD\right)\)
b/ Gọi M là trung điểm AB \(\Rightarrow MH\perp AB\) (do H là tâm tam giác đều)
\(\Rightarrow\widehat{SMH}\) là góc giữa (SAB) và (ABCD)
\(DM=\frac{AB\sqrt{3}}{2}\Rightarrow HM=\frac{1}{3}DM=\frac{AB\sqrt{3}}{6}=\frac{a\sqrt{3}}{6}\)
\(SM=\sqrt{SA^2-AM^2}=\frac{a\sqrt{2}}{2}\)
\(\Rightarrow cos\varphi=\frac{HM}{SM}=\frac{\sqrt{6}}{6}\)
a) () // (ABCD) => // AB => là trung điểm của SB. Chứng minh tương tự với các điểm còn lại
b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).
c) Có hai hình chóp cụt:
S A B C D O H
Do \(\left\{{}\begin{matrix}SA=SC\\SB=SD\end{matrix}\right.\) \(\Rightarrow\) hình chiếu vuông góc của S lên đáy trùng tâm đáy
\(\widehat{BAD}=60^0\Rightarrow\Delta BAD\) đều \(\Rightarrow BD=a\Rightarrow OB=\frac{a}{2}\)
\(\Rightarrow SO=\sqrt{SB^2-OB^2}=\frac{a\sqrt{11}}{2}\)
b/ Kẻ \(OH\perp AB\Rightarrow AB\perp\left(SOH\right)\Rightarrow\widehat{SHO}\) là góc giữa (SAB) và (ABCD)
\(OH=\frac{1}{2}.\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{4}\Rightarrow tan\varphi=\frac{SO}{OH}=\frac{2\sqrt{33}}{3}\)