Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(SA \bot \left( {ABC} \right);SA \subset \left( {SAB} \right) \Rightarrow \left( {SAB} \right) \bot \left( {ABC} \right)\)
\(\left. \begin{array}{l}AH \bot BC\\SA \bot BC\left( {SA \bot \left( {ABC} \right)} \right)\\AH \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAH} \right);BC \subset \left( {SBC} \right) \Rightarrow \left( {SAH} \right) \bot \left( {SBC} \right)\)
b) Ta có \(AH \bot BC,BC \bot SH\left( {BC \bot \left( {SAH} \right)} \right)\)
\( \Rightarrow \left[ {S,BC,A} \right] = \left( {SH,AH} \right) = \widehat {SHA}\)
Xét tam giác ABC vuông tại A có
\(\widehat {ABC} = {30^0} \Rightarrow \widehat {ACH} = {60^0}\)
Xét tam giác ACH vuông tại H có
\(\sin \widehat {ACH} = \frac{{AH}}{{AC}} \Rightarrow AH = a.\sin {60^0} = \frac{{a\sqrt 3 }}{2}\)
Xét tam giác SHA vuông tại A có
\(\tan \widehat {SHA} = \frac{{SA}}{{AH}} = \frac{{a\sqrt 3 }}{2}:\frac{{a\sqrt 3 }}{2} = 1 \Rightarrow \widehat {SHA} = {45^0}\)
Vậy \(\left[ {S,BC,A} \right] = {45^0}\)
Ta có {BC⊥ABAB⊥SC⇒AB⊥CE{BC⊥ABAB⊥SC⇒AB⊥CE
Khi đó {CE⊥ABCE⊥SA⇒CE⊥(SAB){CE⊥ABCE⊥SA⇒CE⊥(SAB)
Áp dụng hệ thức lượng trong tam giác vuông ta có: SC2=SE.SB⇒SESB=SC2SB2SC2=SE.SB⇒SESB=SC2SB2, tương tự SDSE=SC2SA2SDSE=SC2SA2
Lại cả CA=AC√2=2a;VS.ABC=13SC.SABC=23a3CA=AC2=2a;VS.ABC=13SC.SABC=23a3
Khi đó VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13
Do đó VS.CDE=13.23a3=2a39VS.CDE=13.23a3=2a39.
Đáp án A
Xét tam giác SAC vuông tại A có AP là đường cao, ta có:
Bài này ứng dụng bài toán đồng phẳng đã chứng minh cho em hồi sáng:
4 điểm M, A', B', C', D' đồng phẳng nên với điểm S bất kì ta có:
\(\overrightarrow{SM}=m.\overrightarrow{SA'}+n.\overrightarrow{SB'}+p.\overrightarrow{SC'}\)
Khi đó \(m+n+p=1\)
Giải như sau:
Đặt \(\dfrac{SA}{SA'}=x;\dfrac{SB}{SB'}=y;\dfrac{SC}{SC'}=z\)
\(\Rightarrow\overrightarrow{SA}=x.\overrightarrow{SA'};\overrightarrow{SB}=y.\overrightarrow{SB'};\overrightarrow{SC}=z.\overrightarrow{SC'}\)
Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{GS}+\overrightarrow{SA}+\overrightarrow{GS}+\overrightarrow{SB}+\overrightarrow{GS}+\overrightarrow{SC}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=3\overrightarrow{SG}\)
\(\Rightarrow x.\overrightarrow{SA'}+y.\overrightarrow{SB'}+z.\overrightarrow{SC'}=3\overrightarrow{SG}=6\overrightarrow{SM}\) (do M là trung điểm SG)
\(\Rightarrow\dfrac{x}{6}.\overrightarrow{SA'}+\dfrac{y}{6}.\overrightarrow{SB'}+\dfrac{z}{6}.\overrightarrow{SC'}=\overrightarrow{SM}\)
Do M;A';B';C' đồng phẳng
\(\Rightarrow\dfrac{x}{6}+\dfrac{y}{6}+\dfrac{z}{6}=1\) \(\Rightarrow x+y+z=6\)
\(\Rightarrow\dfrac{SA}{SA'}+\dfrac{SB}{SB'}+\dfrac{SC}{SC'}=6\)
Với bài toán trắc nghiệm (hoặc cần kiểm chứng kết quả) chỉ cần chọn trường hợp đặc biệt là (P) song song đáy, khi đó theo Talet thì A', B', C' lần lượt là trung điểm các cạnh nên ta dễ dàng tính ra tổng cần tính là 2+2+2=6
a) \(SA \bot BC\left( {SA \bot \left( {ABC} \right)} \right),AB \bot BC \Rightarrow BC \bot \left( {SAB} \right),BC \subset \left( {SBC} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\)
b) +) Trong (SAC) kẻ \(AD \bot SC \Rightarrow d\left( {A,SC} \right) = AD\)
Xét tam giác ABC vuông tại B có
\(\sin \widehat {CAB} = \frac{{BC}}{{AC}} \Rightarrow AC = \frac{a}{{\sin {{30}^0}}} = 2a\)
Xét tam giác SAC vuông tại A có
\(\frac{1}{{A{D^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow AD = \frac{{2a\sqrt 3 }}{3}\)
Do đó \(d\left( {A,SC} \right) = \frac{{2a\sqrt 3 }}{3}\)
+) \(\left( {SAB} \right) \bot \left( {SBC} \right),\left( {SAB} \right) \cap \left( {SBC} \right) = SB\)
Trong (SAB) kẻ \(AE \bot SB\)
\( \Rightarrow AE \bot \left( {SBC} \right) \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AE\)
Xét tam giác ABC vuông tại B có
\(\tan \widehat {CAB} = \frac{{BC}}{{AB}} \Rightarrow AB = \frac{a}{{\tan {{30}^0}}} = a\sqrt 3 \)
Xét tam giác SAB vuông tại A có
\(\frac{1}{{A{E^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {a\sqrt 3 } \right)}^2}}} = \frac{5}{{6{a^2}}} \Rightarrow AE = \frac{{a\sqrt {30} }}{5}\)
Vậy \(d\left( {A,\left( {SBC} \right)} \right) = \frac{{a\sqrt {30} }}{5}\)
Gọi D là hình chiếu vuông góc của S lên (ABC)
\(SD\perp\left(ABC\right)\Rightarrow SD\perp AB\) , mà \(AB\perp SA\left(gt\right)\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp AD\)
\(\Rightarrow AD||BC\)
Tương tự ta có: \(BC\perp\left(SCD\right)\Rightarrow BC\perp CD\Rightarrow CD||AB\)
\(\Rightarrow\) Tứ giác ABCD là hình vuông
\(\Rightarrow BD=a\sqrt{2}\)
\(SD=\sqrt{SB^2-BD^2}=a\sqrt{2}\)
Gọi P là trung điểm AD \(\Rightarrow MP\) là đường trung bình tam giác SAD
\(\Rightarrow\left\{{}\begin{matrix}MP=\dfrac{1}{2}SD=\dfrac{a\sqrt{2}}{2}\\MP||SD\Rightarrow MP\perp\left(ABC\right)\end{matrix}\right.\)
\(\Rightarrow\alpha=\widehat{MNP}\)
\(cos\alpha=\dfrac{NP}{MN}=\dfrac{NP}{\sqrt{NP^2+MP^2}}=\dfrac{a}{\sqrt{a^2+\dfrac{a^2}{2}}}=\dfrac{\sqrt{6}}{3}\)
1) Ta có : \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
BC \(\perp AB;BC\perp SA\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\) \(\Rightarrow\Delta SBC\perp\) tại B
2) \(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\) . Mà
\(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp HK\) \(\Rightarrow\Delta AHK\perp\) tại H
\(\Delta SAB\perp\) tại A ; \(AH\perp SB\) có : \(AH=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a^2}{\sqrt{2a^2}}=\dfrac{\sqrt{2}}{2}a\)
AC = \(\sqrt{AB^2+BC^2}=\sqrt{2a^2}=\sqrt{2}a\)
\(\Delta SAC\perp\) tại A có : \(AK\perp SC\) có :
\(AK=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=\dfrac{a.\sqrt{2}a}{\sqrt{a^2+2a^2}}=\dfrac{\sqrt{6}}{3}a\)
\(HK=\sqrt{AK^2-AH^2}=\sqrt{\dfrac{2}{3}a^2-\dfrac{1}{2}a^2}=\dfrac{\sqrt{6}}{6}a\)
\(S_{AHK}=\dfrac{1}{2}HA.HK=\dfrac{1}{2}\dfrac{\sqrt{2}}{2}a.\dfrac{\sqrt{6}}{6}a=\dfrac{\sqrt{3}}{12}a^2\)
3) AH \(\perp\left(SBC\right)\Rightarrow\left(AK;\left(SBC\right)\right)=\widehat{AKH}\)
\(\Delta AHK\perp\) tại H có : \(sin\widehat{AKH}=\dfrac{AH}{AK}=\dfrac{\sqrt{2}}{2}a:\dfrac{\sqrt{6}}{3}a=\dfrac{\sqrt{3}}{2}\Rightarrow\widehat{AKH}=60^o\)
a) Trong (SAB) kẻ \(AD \bot SB\) tại D.
\(\left. \begin{array}{l}BC \bot AD\\SB \bot AD\\BC \cap SB = \left\{ B \right\}\end{array} \right\} \Rightarrow AD \bot \left( {SBC} \right) \Rightarrow \)D là hình chiếu của A trên (SBC).
b) A là hình chiếu của S trên (ABC) \(\left( {SA \bot \left( {ABC} \right)} \right)\)
C là hình chiếu của C trên (ABC)
\( \Rightarrow \) AC là hình chiếu của SC trên (ABC)
\( \Rightarrow \) \(\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)
Xét tam giác ABC vuông tại B có
\(A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)
Xét tam giác SAC vuông tại A có
\(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \Rightarrow \widehat {SCA} = \arctan \frac{1}{{\sqrt 2 }}\)
Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = \arctan \frac{1}{{\sqrt 2 }}\)
a) +) Xét tam giác SBC có
N, P lần lượt là trung điểm SB, SC
\( \Rightarrow \) PN là đường trung bình tam giác SBC
\( \Rightarrow \) PN // BC \( \Rightarrow \) PN // (ABC)
+) Xét tam giác SAB có
N, M lần lượt là trung điểm SB, SA
\( \Rightarrow \) MN là đường trung bình tam giác SAB
\( \Rightarrow \) MN // AB
+) \(\left. \begin{array}{l}PN//BC,MN//AB\\PN \cap MN = \left\{ N \right\},BC \cap AB = \left\{ B \right\}\end{array} \right\} \Rightarrow \left( {MNP} \right)//\left( {ABC} \right)\)
\( \Rightarrow \) d((MNP), (ABC)) = d(M, (ABC)) = MA \( = \frac{{SA}}{2} = \frac{h}{2}\) do SA \( \bot \) (ABC)
+) PN // (ABC) \( \Rightarrow \) d(NP,(ABC)) = d(N,(ABC)) = d(M,(ABC))\( = \frac{h}{2}\) (do MN // (ABC))
b)
Ta có \(SA \bot BC,AB \bot BC \Rightarrow BC \bot \left( {SAB} \right);BC \subset \left( {SBC} \right) \Rightarrow \left( {SAB} \right) \bot \left( {SBC} \right)\)
\(\left( {SAB} \right) \cap \left( {SBC} \right) = SB\)
(SAB): kẻ \(AH \bot SB\)
\( \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow \) d(A,(SBC)) = AH
Xét tam giác SAB vuông tại A có
\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{{h^2}}} + \frac{1}{{{a^2}}} = \frac{{{a^2} + {h^2}}}{{{h^2}{a^2}}} \Rightarrow AH = \frac{{ah}}{{\sqrt {{a^2} + {h^2}} }}\)
Vậy \(d\left( {A,\left( {SBC} \right)} \right) = \frac{{ah}}{{\sqrt {{a^2} + {h^2}} }}\)