K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

Kẻ \(SH\perp BC\). Ta thấy:

\(\left\{\begin{matrix} (SBC)\perp (ABC)\\ (SBC)\cap (ABC)\equiv BC\\ SH\perp BC\end{matrix}\right.\Rightarrow SH\perp (ABC)\)

Ta thấy giác $SBC$ và $ABC$ đều là tam giác vuông cân có cạnh huyền chung $BC$ nên $SB=SC=AB=a$

Bằng cách tính toán đơn giản, \(S_{ABC}=\frac{AB.AC}{2}=\frac{a^2}{2}\)

\(SH=\sqrt{\frac{SB^2.SC^2}{SB^2+SC^2}}=\frac{a}{\sqrt{2}}\)

\(\Rightarrow V_{S.ABC}=\frac{S_{ABC}.SH}{3}=\frac{a^3\sqrt{2}}{12}(\text{đvtt})\)

27 tháng 2 2019

Đáp án B

30 tháng 5 2018

22 tháng 2 2019

30 tháng 7 2018

Đáp án C

NV
1 tháng 4 2021

Gọi M là trung điểm SA và O là tâm đáy \(\Rightarrow AO=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\) ; \(AM=\dfrac{a}{2}\)

Qua O kẻ đường thẳng d song song SA, trong mặt phẳng (SAO) qua M kẻ đường thẳng song song AO cắt d tại I

\(\Rightarrow I\) là tâm mặt cầu ngoại tiếp chóp

\(R=IA=\sqrt{IM^2+AM^2}=\sqrt{AO^2+AM^2}=\dfrac{a\sqrt{21}}{6}\)

NV
25 tháng 10 2021

\(\left\{{}\begin{matrix}CD\perp AD\left(gt\right)\\SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\end{matrix}\right.\)

\(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\)

\(\Rightarrow\Delta SCD\) vuông tại D

3 tháng 12 2018