Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Phương pháp:
- Phương pháp tọa độ hóa.
- Công thức tính khoảng cách giữa hai đường thẳng trong không gian:
d Δ 1 ; Δ 2 = M 1 M 2 → . u 1 → ; u 2 → u 1 → ; u 2 → , M 1 ∈ Δ 1 ; M 2 ∈ Δ 2
Cách giải:
Gắn hệ trục tọa độ (như hình vẽ):
A 0 ; 0 ; 0 , B 0 ; a ; 0 , C a 3 2 ; a 2 ; 0 , S 0 ; 0 ; 3 a
M, N lần lượt là trung điểm của AB, SC
⇒ M 0 ; a 2 ; 0 , N a 3 4 ; a 4 ; 3 a 2
⇒ A N → = a 3 4 ; a 4 ; 3 a 2 ; C M → = − a 3 2 ; 0 ; 0
Đường thẳng AN có 1 VTCP u 1 → = 3 ; 1 ; 6 ,
đi qua điểm A 0 ; 0 ; 0 .
Đường thẳng CM có 1 VTCP u 1 → = 1 ; 0 ; 0 , đi qua điểm A 0 ; a 2 ; 0 .
A M → = 0 ; a 2 ; 0 , u 1 → ; u 2 → = 0 ; 6 ; − 1
d A N ; C M = A M → . u 1 → ; u 2 → u 1 → ; u 2 → = 0.0 + a 2 .6 + 0. − 1 0 2 + 6 2 + 1 2 = 3 a 37
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Đáp án A
Gọi I,J lần lượt là trung điểm cạnh BC và SA
Suy ra, IJ là hình chiếu vuông góc của EM lên (SBD)
Đáp án A
Gọi I,J lần lượt là trung điểm cạnh BC và SA
Ta có A C ⊥ S B D , EI // AC, MJ//AC => E I ⊥ ( S B D ) , M J ⊥ ( S B D )
Suy ra, IJ là hình chiếu vuông góc của EM lên (SBD)
Đáp án C
Phương pháp:
- Gắn hệ trục tọa độ Oxyz, tìm tọa độ các điểm E, M.
- Sử dụng công thức tính góc giữa đường thẳng và mặt phẳng: sin α = n → . u → n → . u →
Cách giải:
Đáp án B.
Gọi F là trung điểm của B D ⇒ E F / / C D
Góc giữa SE và CD là góc giữa SE và EF.
Ta có C D = 2 2 . 3 2 = 6 ⇒ E F = 6 2
Lại có S E = S C 2 + C E 2 = 1 2 + 2 2 = 3
Trong tam giác vuông C D F : C F = C D 2 + D F 2 = 6 2 + 2 2 4 2 = 13 2
Trong tam giác vuông S C F :
S F = S C 2 + C F 2 = 1 2 + 13 2 2 = 15 2
Trong tam giác S E F :
cos S E F ^ = S E 2 + E F 2 − S F 2 2 S E . E F = 3 + 6 4 − 15 2 2 3 . 6 2 = − 2 2
⇒ S E F ^ = 3 π 4 ⇒ Góc giữa SE và CD bằng π − 3 π 4 = π 4 .