K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 4 2021

\(\left\{{}\begin{matrix}SM\perp\left(MNPQ\right)\Rightarrow SM\perp PN\\PN\perp MN\end{matrix}\right.\) \(\Rightarrow PN\perp\left(SMN\right)\)

Lại có \(\left\{{}\begin{matrix}PN\perp\left(SMN\right)\\SN\in\left(SMN\right)\end{matrix}\right.\) \(\Rightarrow PN\perp SN\)

17 tháng 4 2021

M S N P Q

Giải :a) Vì SM ⊥ ( MNPQ ) => SM ⊥ PN

Xét hình vuông MNPQ có : MN ⊥ PN

    => PN ⊥ ( SMN )

b) Ta có PN ⊥  ( SMN ) => PN ⊥ SN 

7 tháng 5 2022

Mik nghĩ là : \(SM\perp\) đáy và MK là đường cao của \(\Delta SMQ\)

7 tháng 5 2022

\(MQ=\sqrt{MP^2-MN^2}=\sqrt{16a^2-4a^2}=2\sqrt{3}a=SM\)

\(\Delta SMN\perp\) tại M ; \(MH\perp SN\) có : 

\(MH=\dfrac{SM.MN}{\sqrt{SM^2+MN^2}}=\dfrac{2a\sqrt{3}.2a}{\sqrt{12a^2+4a^2}}=\sqrt{3}a\)

Làm tương tự ; tính được : \(MK=\sqrt{6}a\) . Cần tính HK

Tính được : \(SH=3a;MK=SK=\sqrt{6}a\) . 

Tính được : \(SN=NQ=4a;SQ=2\sqrt{6}a\) \(\Rightarrow cos\widehat{S}=\dfrac{\sqrt{6}}{4}\)  . Khi đó : 

\(HK^2=SK^2+SH^2-2SK.SH.cos\widehat{S}=15a^2-6\sqrt{6}a^2.\dfrac{\sqrt{6}}{4}=6a^2\Rightarrow HK=\sqrt{6}a\)

\(\Delta MHK\) có : p = \(\dfrac{MH+HK+MK}{2}=\dfrac{2\sqrt{6}+\sqrt{3}}{2}a\)

Suy ra : \(S=\sqrt{p\left(p-MH\right)\left(p-MK\right)\left(p-HK\right)}=\dfrac{3\sqrt{7}}{4}a^2\)

1: AC=căn a^2+a^2=a*căn 2

=>SC=căn SA^2+AC^2=a*căn 8

SB=căn AB^2+SA^2=a*căn 7

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

=>SB vuông góc BC

NV
14 tháng 1

a.

Góc giữa SM và MQ là góc SMQ

Do chóp đều nên \(SM=SN=SP=SQ=8a\sqrt{2}\)

Áp dụng định lý hàm cosin:

\(cos\widehat{SMQ}=\dfrac{SM^2+MQ^2-SQ^2}{2SM.MQ}=\dfrac{\sqrt{2}}{4}\)

\(\Rightarrow\widehat{SMQ}\approx69^018'\)

b.

Góc giữa SN và NP là góc SNP

Do chóp đều \(\Rightarrow\widehat{SNP}=\widehat{SMQ}=69^018'\)

c.

Do MN song song PQ nên góc giữa SQ và MN bằng góc giữa SQ và PQ là góc SQP

Do chóp đều nên \(\widehat{SQP}=\widehat{SMQ}=69^018'\)

d.

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(MNPQ\right)\)

\(\Rightarrow SO\perp NQ\)

Mà \(NQ\perp MP\) (2 đường chéo hình vuông)

\(\Rightarrow NQ\perp\left(SMP\right)\Rightarrow NQ\perp SP\)

\(\Rightarrow\) Góc giữa SP và NQ bằng 90 độ

Câu 1:

SM\(\perp\)(MNPQ)

=>SM\(\perp\)PQ

=>\(\widehat{SM;PQ}=90^0\)

Câu 3: C

27 tháng 10 2017

Đáp án B

3 tháng 9 2017

Chọn D

Xác định được

Gọi N là trung điểm BC, suy ra MN//AB.

Lấy điểm E đối xứng với N qua M, suy ra ABNE là hình chữ nhật.

Do đó

a: BC vuông góc AM

BC vuông góc SA

=>BC vuông góc (SAM)

b: BC vuông góc (SAM)

=>BC vuông góc SM

=>(SM;(ABC))=90 độ