K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

Vì \(SE = \frac{1}{3}SA,SF = \frac{1}{3}SB \Rightarrow \frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\left( { = \frac{1}{3}} \right)\)

Tam giác SAB có: \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\) nên FE//AB và \(EF = \frac{1}{3}AB\).

Vì hai vectơ \(\overrightarrow {EF} \) và \(\overrightarrow {AB} \) cùng hướng nên \(\overrightarrow {EF}  = \frac{1}{3}\overrightarrow {AB} \)  (1)

Vì ABCD là hình bình hành nên \(AB = CD\) và AB//CD. Do đó, \(\overrightarrow {AB}  = \overrightarrow {DC} \) (2)

Từ (1) và (2) ta có: \(\overrightarrow {EF}  = \frac{1}{3}\overrightarrow {DC} \)

17 tháng 3 2019

Chọn A

Khi đó 

 

8 tháng 4 2017

Chọn A

Cách 2: Dùng công thức tính nhanh tỷ số thể tích

Có 

Vì Vậy 

18 tháng 8 2016

có 

 Gắn vào hệ trục Oxyz có 

CÓ : S(0,0,0) A(0,0,a) , B(0,a,0), C(a,0,0)

20 tháng 8 2016

e nhớ ko lầm là a đã học tới bài này âu mà sao bik làm hay z???

 

20 tháng 12 2018

Chọn A

 

22 tháng 4 2019

Chọn D

Thể tích khối chóp S. ABCD là:

Thể tích tứ diện SMNC là:

.

Thể tích tứ diện NACD là:

.

Thể tích tứ diện MABC là:

.

Thể tích tứ diện SAMN là:

.

Mặt khác ta có:

Suy ra:

14 tháng 1 2017

5 tháng 4 2019

Phương pháp:

Sử dụng công thức tỉ số thể tích cho khối chóp tam giác

(Công thức Simson): Cho khối chóp S.ABC, các điểm A1, B1, C1 lần lượt

thuộc SA, SB, SC. Khi đó,

Cách giải:

ABCD là hình chữ nhật 

Ta có:

Thể tích khối chóp S.ABCD là:

Ta có: 

 

 

Chọn: B

Chú ý: Công thức tỉ số thể tích trên chỉ áp dụng cho chóp tam giác.

NV
30 tháng 6 2021

Chắc là mp (P) đi qua A'

Đặt \(V_{SABCD}=V\)

Theo định lý Talet: \(\dfrac{SA'}{SA}=\dfrac{SB'}{SB}=\dfrac{SC'}{SC}=\dfrac{SD'}{SD}=\dfrac{3}{4}\)

Ta có: \(\dfrac{V_{SA'B'C'D'}}{V_{SABCD}}=\dfrac{2V_{SA'B'C'}}{2V_{SABC}}=\dfrac{V_{SA'B'C'}}{V_{SABC}}=\dfrac{SA'}{SA}.\dfrac{SB'}{SB}.\dfrac{SC'}{SC}=\dfrac{3}{4}.\dfrac{3}{4}.\dfrac{3}{4}=\dfrac{27}{64}\)

Tỉ số thể tích 2 phần (phần trên chia phần dưới) là: \(\dfrac{27}{64}:\left(1-\dfrac{27}{64}\right)=\dfrac{27}{37}\)