K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

Đáp án A

23 tháng 5 2018

Đáp án A

3 tháng 11 2018

Đáp án C

16 tháng 11 2018

Xác định được 

Vì M là trung điểm SA nên

Kẻ  và chứng minh được  nên 

Trong ∆  vuông MAD tính được 

Chọn A.

13 tháng 3 2019

Đáp án C

Kẻ I M ⊥ S D tại M Đường thẳng  I M ⊂ m p P

ABCD là hình vuông ⇒ C D ⊥ A D  mà  S A ⊥ C D ⇒ C D ⊥ S A D

Ta có P ⊥ A D  mà  C D ⊥ A D ⇒ C D / / m p P

Qua I kẻ đường thẳng song song với CD, cắt BC tại P

Qua M kẻ đường thẳng song song với CD, cắt SC tại N

Suy ra mặt phẳng (P) cắt khối chóp S.ABCD theo thiết diện là hình thang vuông IMNP tại M và I.

Tam giác SAD vuông tại A có  d A ; S D = a 3 ⇒ I M = a 3 2

Tam giác IMD vuông tại M có  M D = I D 2 − I M 2 = a 2 ⇒ S M S D = 7 8 ⇒ M N = 7 a 4

Vậy diện tích hình thang IMNP là  S = I M . M N + I P 2 = a 3 2 . 1 2 . 7 a 4 + 2 a = 15 3 16 a 2

26 tháng 9 2018

Đáp án C.

Ta có SAD là tam giác đều nên S H ⊥ A D  

Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .  

Dựng  B E ⊥ H C ,

do B E ⊥ S H ⇒ B E ⊥ S H C  

Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a  

Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .  

Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2  

suy ra  V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H

= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .

9 tháng 4 2017

Đáp án D

11 tháng 3 2017

1 tháng 1 2020

Đáp án A