Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra S I ⊥ ( A B C )
Gọi M là trung điểm của BC
Diện tích tam giác ABC là:
Vậy thể tích khối chóp
Chọn C.
Chọn B.
Phương pháp: Mấu chốt bài toán là chỉ ra được tam giác SAC vuông tại S.
Cách giải: Gọi O là giao điểm của AC và BD, H là hình chiếu của S lên mặt đáy.
Đáp án B
Gọi O là hình chiếu của S lên A B C ; S O = S B 2 − B O 2 = 4 a 2 − a 2 3 = a 33 3
V = 1 3 S Δ A B I . S O = 1 3 . a 2 3 8 . a 33 3 = a 3 11 24
Đáp án D
Ta có:
S A B C = A B 2 3 4 = 3 2 ⇒ V S . A B C = 1 3 . S A . S A B C = 1 2 .
Đáp án A
Gọi H là hình chiếu của S lên (ABCD)
Ta có: A H = a 2 − a 2 2 = a 3 3 ;
S H = 3 a 2 − a 3 3 2 = 26 3 a
Thể tích khối chóp là:
V = 1 3 S H . S A B C D = 1 3 . 26 3 a . 1 2 a 2 sin 60 ° = 26 a 3 12
Chọn D.