K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Xét hình chóp cụt đều ABCD.AB'C'D'

Gọi M ,M' thứ tự là trung điểm của BC , B'C' . Khi đó MM' là đường cao của hình thang cân BCC'B' . Do đó diện tích xung quanh của hình chóp cụt đều là :

\(S_{xq}=4.\dfrac{a+b}{2}.MM'=\left(2a+2b\right).MM'\)

Từ giả thiết , ta có :

\(\left(2a+2b\right).MM'=a^2+b^2hayMM'=\dfrac{a^2+b^2}{2\left(a+b\right)}\left(1\right)\)

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O') . Trong mặt phẳng (OMM'O') , kẻ MH \(\perp\) O'M' . Khi đó : \(HM'=O'M'-O'H=\dfrac{b-a}{2}\)

Trong tam giác vuông MHM' ta có :

\(MM'^2=MH^2+HM'^2=h^2+\left(\dfrac{b-a}{2}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra :

\(h^2+\left(\dfrac{b-a}{2}\right)^2=\dfrac{\left(a^2+b^2\right)^2}{4\left(a+b\right)^2}\)

\(\Rightarrow h^2=\dfrac{\left(a^2+b^2\right)^2-\left(b^2-a^2\right)^2}{4\left(a+b\right)^2}=\dfrac{a^2b^2}{\left(a+b\right)^2}\)

Vậy \(h=\dfrac{ab}{a+b}\)

3 tháng 3 2019

a) Gọi O là tâm của đáy ABCD, M là giao điểm của SO và mặt phẳng (P). Ta có: OM = 2(cm).

Ta tính được O B   =   2 2 c m rồi suy ra SO = 5 (cm)

Từ đó chiều cao cần tìm là: SM = SO - OM 3 (cm)

b) Gọi I là trung điểm của BC. E, F, J lần lượt là giao điểm của SB, SC, SI với mặt phẳng (p).

Diện tích xung quanh là:

(8+8+8)/2*10=10*12=120cm2

Sxq=1/2*10*4*12=2*10*12=2*120=240cm2

Stp=240+10^2=340cm2

10 tháng 2 2018

13 tháng 5 2017

\(a,S_{xp}=4.\dfrac{a+2a}{2}.a=6a^2\)

\(b,\)Vẽ một mặt bên. Ta có:\(AH=\dfrac{AB-A^'B^'}{2}=\dfrac{2a-a}{2}=\dfrac{a}{2}\)

Trong tamn giác vuông A'HA:

\(AA^'=\sqrt{a^2+\left(\dfrac{a}{2}\right)^2}=\sqrt{\dfrac{5a^2}{4}}\)

Từ đó tính tiếp sẽ ra chiều cao hình chóp

Đáp số :Độ dài cạnh bên là :\(\sqrt{\dfrac{5a^2}{4}}\)

Chiều cao chóp cụt :\(\sqrt{\dfrac{3a^2}{4}}\)

Thể tích là:

V=1/3*5^2*8=200/8(m3)

25 tháng 6 2019

Xét hình chóp cụt đều ABCD.A'B'C'D' như hình bs.19.

Gọi M, M' thứ tự là trung điểm của BC, B'C'. Khi đó MM' là đường cao của hình thang cân BCC'B'.

Do đó diện tích xung quanh của hình chóp cụt đều là:

S x q  = 4.(a+b)/2.MM′=(2a+2b).MM′

Từ giả thiết ta có:

(2a+2b).MM′= a 2 + b 2  Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O'). Trong mặt phẳng (OMM'O'), kẻ MH ⊥ O'M'. Khi đó: HM' = O'M' – O'H = (b−a)/2

Trong tam giác vuông MHM' ta có: M M ' 2 = M H 2 + H M ' 2 = h + b - a / 2 2  (2)

Từ (1) và (2) suy ra :

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8